当前位置: X-MOL首页全球导师 海外导师 › Lin, Wenbin

个人简介

Dr. Wenbin Lin is the James Franck Professor of Chemistry at the University of Chicago. Before assuming his current position on July 1, 2013, Dr. Lin was the Kenan Distinguished Professor of Chemistry and Pharmacy at the University of North Carolina at Chapel Hill (UNC-CH). Dr. Lin obtained a BS degree from the University of Science and Technology (Hefei, China) in 1988 and received a PhD degree in chemistry from the University of Illinois at Urbana-Champaign in 1994. He was a NSF postdoctoral fellow at Northwestern University before starting his independent academic career in 1997. Dr. Lin's research efforts focus on designing molecular materials for sustainability and human health. His group has worked on a variety of research areas, including nonlinear optical materials, porous materials for catalysis and separation, solar fuels, and nanomedicine. Dr. Lin's group has published over 250 peer-reviewed papers, and his work has been well received by the community as evidenced by his selection to be among the top 10 chemists in the 1999-2009 decade based on per article citations. Dr. Lin has won numerous professional honors for his contributions to the rational design of functional molecular materials.

研究领域

Sustainable Catalysis Heterogeneous catalysis with inorganic porous materials such as zeolites is of paramount importance for the production of many large-scale commodity products, but has rather limited success in fine chemical synthesis. We envisioned in 2001 that MOFs are particularly suited to generating single-site solid catalysts with unprecedentedly uniform catalytic sites and open channels for shape-, size-, chemo-, and stereo-selective reactions by taking advantage of the ability to assemble well-defined molecular building blocks into solid materials. The molecular origin of MOF catalysts significantly broadens the scope of reactions that porous solids can successfully catalyze, and allows for the systematic tuning of catalytic activities. On the other hand, MOF-based solid catalysts can simply be recovered and reused, yielding reductions in cost of catalyst regeneration and product purification in industrial processes. In the past decade, we and other have shown that MOFs indeed provides an excellent platform for designing single-site solid catalysts for a large range of organic transformations that cannot be accomplished with inorganic porous materials. For example, we reported the first chiral MOF capable of catalyzing highly enantioselective reactions in J. Am. Chem. Soc., 2005, 127, 8940. We are actively pursuing the rational design of MOF-based asymmetric catalysts for many important stereoselective organic reactions. We are also interested in combining light-harvesting properties of MOFs to develop highly efficient photocatalytic systems for thermodynamically uphill organic transformations. Lastly, we are taking advantage of unique attributes of MOFs to design earth abundant metal-based single-site solid catalysts. Renewable Energy Solar energy is one of the few alternative energy sources that could be scaled up to meet our future needs. The amount of solar energy that reaches our planet in one hour is more than enough to fuel the world for one year at the current consumption rate. We are designing novel hybrid materials to address the three fundamental steps that are needed to convert sunlight into solar fuels: a) sunlight absorption by the antenna to efficiently generate charge-separated excited states; b) efficient conversion of excited states to electrochemical energy as redox equivalents; and c) the use of redox equivalents (electrons and holes) to carry out energy-gaining chemical reactions (such as water splitting). Although each fundamental step can be studied separately, a device (system) encompassing all components is needed to produce solar fuels. We surmise that MOFs can serve as a unique material platform to integrate different molecular components into a functional water splitting system. Different types of molecular and nanoparticle (NP) components can be incorporated into the MOF framework in a sequential and ordered manner to carry out the three fundamental steps of solar fuels production. Such a molecule-based solar fuel system is akin to the UV-driven TiO2–based water splitting device reported by Honda and Fujishima, but each functional component can be readily fine-tuned to maximize the efficiencies of sunlight absorption and energy storing reactions. We have incorporated light-harvesting molecules such as Ru(bpy)32+ into MOFs to study exciton transport in molecular solids and catalyze light-driven organic transformations. We have also incorporated water oxidation and proton/carbon dioxide reduction catalysts into MOF structures to catalyze water oxidation and proton/CO2 reduction half reactions, respectively. Through these projects, we hope to gain in-depth understanding of the three fundamental steps that are needed to convert sunlight into solar fuels and to design hierarchical MOF assemblies comprising multiple functional components to achieve solar energy harvesting and storage. Nanoscale Metal-Organic Frameworks (nMOFs) Cancer is a major public health problem in the United States and around the world. The mortality rates of many types of cancers have changed very little in the past 3 decades. The high cancer mortality rates can be attributed to the lack of early diagnosis techniques and effective therapies as conventional diagnostic and therapeutic agents suffer from several drawbacks, including limited blood circulation time, non-specific toxicity, and drug resistance. We are developing nanoparticle imaging and therapeutic agents in order to overcome these limitations. Nanoparticles can have prolonged circulation half-lives, high payloads, and the ability to actively target cancer cells and to bypass drug resistance mechanisms. We have developed novel nanoparticles for targeted delivery of anticancer therapeutics and multimodal contrast agents for optical imaging, X-ray computed tomography, and magnetic resonance imaging. In particular, nanoscale coordination polymers (NCPs) or nanoscale metal organic frameworks (NMOFs) developed in our lab have several distinctive advantages and have been shown to be effective anticancer agents in vivo. NCPs/NMOFs can also accommodate multiple types of therapeutic agents (chemotherapeutics, siRNAs, photodynamic and photothermal agents, etc.) for synergistic effects and enhanced cancer therapy. Their ability to integrate both imaging and therapy components into one single formulation has also allowed us to explore their theranostic properties. We are actively working on translating the most promising NCP/NMOF systems into the clinic. Nanoscale Coordination Polymers (NCPs) The nanomedicine division of the Lin lab has grown rapidly in recent years and become a major component of the group’s work. Nanoscale coordination polymers (NCPs) in particular have been developed as a platform to deliver drugs, immunotherapy, gene therapies such as siRNA, and agents for photodynamic therapy for cancer treatment. Past efforts have also shown that the NCP platform can also be used to deliver imaging and sensing agents, which could lead to further development of theranostic systems. Combination with immunotherapy and antibody targeting moieties has also been explored and show great promise for targeted cancer therapy. While there is a strong emphasis on developing systems viable for translation into clinical studies, much of the work focuses on gaining a comprehensive understanding of the fundamental science behind nanoparticle drug treatment: mechanisms of action, uptake, drug release, and immune activation. In vivo studies demonstrate enhanced efficacy for nanoparticle systems compared with conventional chemotherapy: demonstrating how the structure and design of core-shell nanoparticles contributes to this efficacy requires even greater attention and study.

近期论文

查看导师最新文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

“STING agonist-conjugated metal-organic framework induces artificial leukocytoid structures and immune hotspots for systemic antitumor responses” Luo, T.; Jiang, X.; Fan, Y.; Yuan, E.; Li, J.; Tillman, L.; Lin, W. Natl. Sci. Rev., 2024 11, 7, nwae167 “Heterogeneous Porous Synergistic Photocatalysts for Organic Transformations” Zhu, Y-Y.; He, Y-Y.; Li, Y-X..; Liu, C-H.; Lin, W. Chem. Eur. J., 2024 30, 37, e202400842 “Phosphate Coordination to Metal-Organic Layer Secondary Building Units Prolongs Drug Retention for Synergistic Chemoradiotherapy” Luo, T.; Jiang, X.; Li, J.; Nash, G. T.; Yuan, E.; Albano, L.; Tillman, L.; Lin, W. Adv. Sci., 2024 11, 23, 2310309 “Nanoparticles Synergize Ferroptosis and Cuproptosis to Potentiate Cancer Immunotherapy” Li, Y.; Liu, J.; Chen, Y.; Weichselbaum, R.; Lin, W. Adv. Sci., 2024 11, 23, 2310309 “Metal–Organic Layers with Photosensitizer and Pyridine Pairs Activate Alkyl Halides for Photocatalytic Heck-Type Coupling with Olefins” Fan, Y.; Blenko, A. L.; Labalme, S.; Lin, W. J. Am. Chem. Soc., 2024 146, 12, 7936 “Immunogenic Bifunctional Nanoparticle Suppresses Programmed Cell Death-Ligand 1 in Cancer and Dendritic Cells to Enhance Adaptive Immunity and Chemo-Immunotherapy” Liu, J.; Li, Y.; Yang, K.; Weichselbaum, R.; Lin, W. ACS Nano, 2024 18, 6, 5152 “Anthraquinone-based covalent organic framework as a recyclable direct hydrogen atom transfer photocatalyst for C–H functionalization” Wang, Z.; Yeary, P.; Fan, Y.; Lin, W. Chem. Sci., 2024 15, 4920. “Nanoscale Covalent Organic Framework with Staggered Stacking of Phthalocyanines for Mitochondria-Targeted Photodynamic Therapy” Liu, J; Kang, D. W.; Fan, Y.; Nash, G.T.; Jiang, X.; Weichselbaum, R.; Lin, W. J. Am. Chem. Soc. 2023, 146, 1, 849. “Mechanoregulatory Cholesterol Oxidase-Functionalized Nanoscale Metal–Organic Framework Stimulates Pyroptosis and Reinvigorates T Cells.” Zhen, W.; Luo, T.; Wang, Z.; Jiang, X. Yuan, E.; Weichselbaum, R.; Lin, W. Small 2023, 19, 52, 2305440. “A Spirobifluorene-Based Covalent Organic Framework for Dual Photoredox and Nickel Catalysis” Fan, Y.; Kang, D. W.; Labalme, S.; Lin, W. J. Am. Chem. Soc. 2023, 145, 46, 25074. “Nanoscale coordination polymer synergizes photodynamic therapy and toll-like receptor activation for enhanced antigen presentation and antitumor immunity” Jiang, X.; Liu, J.; Lee, M.; Peng, C.; Luo, T.; Tillman, L.; Weichselbaum, R.; Lin, W. Biomaterials 2023, 302, 122334. “Diaryl Dihydrophenazine-Based Porous Organic Polymers Enhance Synergistic Catalysis in Visible-Light-Driven Organic Transformations” Cheng, Y.; Li, Y-X..; Liu, C-H.; Zhu, Y-Y. Lin, W. Angew. Chem. Int. Ed. 2023, 135, e202310470. “Co-delivery of three synergistic chemotherapeutics in a core-shell nanoscale coordination polymer for the treatment of pancreatic cancer” Jiang, X.; Lee, M.; Luo, T.; Tillman, L.; Lin, W. Biomaterials 2023, 301, 122235. “Generation and Stabilization of a Dinickel Catalyst in a Metal-Organic Framework for Selective Hydrogenation Reactions.” Guo, Q.; Wang, Z.; Feng, X..; Fan, Y.; Lin, W. Angew. Chem. Int. Ed. 2023, 62, e202306905. “Nanoscale Metal–Organic Framework with an X-ray Triggerable Prodrug for Synergistic Radiotherapy and Chemotherapy.” Xu, Z.; Zhen, W.; McCleary, C.; Luo, T.; Jiang, X. Peng, C.; Weichselbaum, R.; Lin, W. J. Am. Chem. Soc. 2023, 145, 34, 18698. “Platinum-based combination nanomedicines for cancer therapy.” Li, Y.; Lin, W. Curr. Opin. Chem. Biol. 2023,. “Two-Dimensional Nanosonosensitizers Facilitate Energy Transfer to Enhance Sonodynamic Therapy.” Lin, G.; Nash, G.T.; Luo, T.; Ghosh, I.; Sohoni, S.; Christofferson, A.J.; Liu, G.; Engel, G.S., Lin, W. Adv. Mater. 2023, 2212069. “Pharmacological ascorbate potentiates combination nanomedicines and reduces cancer cell stemness to prevent post-surgery recurrence and systemic metastasis.” Jiang, X.; Liu, J.; Mao, J.; Han, W.; Fan, Y.; Luo, T.; Xia, J.; Lee, M.; Lin, W. Biomaterials, 2023, 295, 122037. “Molecular Engineering of Metal-Organic Layers for Sustainable Tandem and Synergistic Photocatalysis.” Fan, Y.; Zheng, H.; Labalme, S.; Lin, W. J. Am. Chem. Soc. 2023, 145, 7, 4158–4165. “Synthesis and Characterization of Ether Adducts of Thorium Tetrahydroborate, Th(BH4)4, and Chemical Vapor Deposition of Thorium Boride Thin Films.” Dunbar, A.C.; Gozum, J.E.; Lin, W.; Flores, V.J.; Girolami, G.S. Inorg. Chem. 2023, in press. “Enhanced Energy Transfer in A p-Conjugated Covalent Organic Framework Facilitates Excited-State Nickel Catalysis.” Fan, Y.; Kang,D. W.; Labalme, S.; Li, J.; Lin, W. Angew. Chem. Int. Ed. 2023, 62, e202218908. “A Three-in-One Nanoscale Coordination Polymer for Potent Chemo-Immunotherapy.” Liu, J.; Jiang, X.; Feng, X. Lee, M.J.; Li, Y.; Mao, J.; Weichselbaum, R.R.; Lin, W. Small Methods 2023, doi: 10.1002/smtd.202201437. “Nanoparticle-Mediated Radiotherapy Remodels the Tumor Microenvironment to Enhance Antitumor Efficacy.” Zhen, W.; Weichselbaum, R.R.; Lin, W. Adv. Mater. 2023, doi: 10.1002/adma.202206370. “Two-Stage SN38 Release from A Core-Shell Nanoparticle Enhances Tumor Deposition and Antitumor Efficacy for Synergistic Combination with Immune Checkpoint Blockade.” Jiang, X.; Liu, J.; Lee, M.J.; Xia, J.; Luo, T.; Rodriguez, M; Lin, W. ACS Nano, 2022, 16,21417-21430. “A Chiral Covalent-Organic Framework for Asymmetric Photooxidation in Water.” Zheng, H.; Lin, W. Chem. Catal. 2022, 2(11), 2820-2822. “Monte Carlo Simulation-Guided Design of a Thorium-Based Metal-Organic Framework for Efficient Radiotherapy-Radiodynamic Therapy.” Xu, Z.; Luo, T.; Mao, J.; McCleary, C.; Yuan, E.; Lin, W. Angew. Chem. Int. Ed. 2022, 61, e202208685. “TLR3 agonist nanoscale coordination polymer synergizes with immune checkpoint blockade for immunotherapy of cancer.” Li, Y.; Jiang, X.; Luo, T.; Xia, J.; Lee, M.J.; Weichselbaum, R.R.; Lin, W. Biomaterials 2022, 290, 121831. “Nanoscale Metal-Organic Frameworks for Photodynamic Therapy and Radiotherapy.” Mao, J.; Xu, Z.; Lin, W. Curr. Opin. Chem. Eng. 2022, 38, 100871. “Moderate Low UVB Irradiation Modulates Tumor-associated Macrophages and Dendritic Cells and Promotes Antitumor Immunity in Tumor-bearing Mice.” Park, G.; Cuim Y.-H.; Yang, S.; Sun, M.; Wilkinson, E.; Li, H.; Zhang, Y.B.; Chen, J.; Bissonnette, M.; Lin, W. ; He, Y.-Y. Photochem. Photobiol. 2022, doi: 10.1111/php.13684. “Biomimetic active sites on monolayered metal-organic frameworks for artificial photosynthesis.” Lan, G.; Fan, Y.; Shi, W.; You, E.; Veroneau, S.S.; Lin, W. Nat. Catal. 2022, 5, 1006–1018. “Zinc-c-di-AMP nanoparticles target and suppress tumors via endothelial STING activation and tumor associated macrophage reinvigoration.” Yang, K.; Han, W.; Jiang, X.; Piffko, A.; Bugno, J.; Han, C.; Li, S.; Liang, H.; Xu, Z.; Zheng, W.; Wang, L.; Wang, J.; Huang, X.; Ting, J.P.Y.; Fu, X.-Y.; Lin, W. ; Weichselbaum, R.R. Nat. Nanotech. 2022, 17, 1322–1331. “Two-Dimensional Nanoradiosensitizer Enhances Radiotherapy and Delivers STING Agonists to Potentiate Cancer Immunotherapy.” Luo, T.; Nash, G.T.; Jiang, X.; Feng, X.; Mao, J.; Liu, J.; Juloori, A.; Pearson, A.T.; Lin, W. Adv. Mater. 2022, 34, 2110588. “Site Isolation in Metal-Organic Layers Enhances Photoredox Gold Catalysis.” Zheng, H.; Fan, Y.; Song, Y.; Chen, J.S.; You, E.; Labalme, S.; Lin, W. J. Am. Chem. Soc. 2022, 144, 24, 10694–10699. “Tumor-Activatable Nanoparticles Target Low-Density Lipoprotein Receptor to Enhance Drug Delivery and Antitumor Efficacy.” Jiang, X.; Han, W.; Liu, J.; Mao, J.; Lee, M.J.; Rodriguez, M.; Li, Y.; Luo, T.; Xu, Z.; Yang, K.; Bissonnette, M.; Weichselbaum, R.R.; Lin, W. Adv. Sci. 2022, 9, 2201614. “Direct photo-oxidation of methane to methanol over a mono-iron-hydroxyl site.” An, B.; Li, Z.; Wang, Z.; Zeng, X.; Han, X.; Cheng, Y.; Sheveleva, A.M.; Zhang, Z.; Tuna, F.; McInnes, E.J.L.; Frogley, M.D.; Ramirez-Cuesta, A.J.; Natrajan, L.; Wang, C.; Lin, W.; Yang, S.; Schröder, M. Nat. Mater. 2022, 21, 932–938. “Dimensional Reduction Enhances Photodynamic Therapy of Metal-Organic Nanophotosensitizers.” Luo, T.; Fan, Y.; Mao, J.; Yuan, E.; You, E.; Xu, Z.; Lin, W. J. Am. Chem. Soc. 2022, 144, 5241-5246. “Synergistic checkpoint-blockade and radiotherapy–radiodynamic therapy via an immunomodulatory nanoscale metal–organic framework.” Ni, K.; Xu, Z.; Culbert, A.; Luo, T.; Guo, N.; Yang, K.; Pearson, E.; Preusser, B.; Wu, T.; La Riviere, P.; Weichselbaum, R.R.; Spiotto, M.T.; Lin, W. Nat. Biomed. Eng. 2022, 6, 144-156.DOI: 10.1038/s41551-022-00846-w. “Co-delivery of Dihydroartemisinin and Pyropheophorbide-Iron Elicits Ferroptosis to Potentiate Cancer Immunotherapy.” Han, W.; Duan, X.; Ni, K.; Li, Y.; Chan, C.;Lin, W. Biomaterials, 2022, 280, 121315. “Light-driven Proton Transport across Liposomal Membranes Enabled by Janus Metal-Organic Layers.” Hu, H.; Zhu, J.; Cao, L.; Wang, Z.; Gao, Y.; Yang, L.; Lin, W. Wang, C. Chem, 2022, 8, 450-464. “Dimethylaminomicheliolide Sensitizes Cancer Cells to Radiotherapy for Synergistic Combination with Immune Checkpoint Blockade.” Li, Y.; Ni, K.; Chan, C.; Guo, N.; Luo, T.; Han, W.; Culbert, A.; Weichselbaum, R.R.;Lin, W. Adv. Therap. 2022, 5, 2100160. DOI: 10.1002/adtp.202100160. “A Substrate-Binding Metal-Organic Layer Selectively Catalyzes Photoredox Ene-Carbonyl Reductive Coupling Reactions.” Fan, Y.; You, E.; Xu, Z,;Lin, W. J. Am. Chem. Soc. 2021, 143, 18871-18876. “Reprogramming of Neutrophils as Non-Canonical Antigen Presenting Cells by Radiotherapy-Radiodynamic Therapy to Facilitate Immune-Mediated Tumor Regression.” Guo, N.; Ni, K.; Luo, T.; Lan, G.; Arina, A,; Xu, Z.; Mao, J.; Weichselbaum, R.R.; Spiotto, M.T.;Lin, W. ACS Nano, 2021, 15, 17515-17527. “Bifunctional Metal-Organic Layers for Tandem Catalytic Transformations Using Molecular Oxygen and Carbon Dioxide.” Shi, W.; Quan, Y.; Lan, G.; Ni, K.; Song, Y.; Jiang, X.; Wang, C.;Lin, W. J. Am. Chem. Soc. 2021, 143, 16718-16724. “Nanoscale Coordination Polymers for Combined Chemotherapy and Photodynamic Therapy of Metastatic Cancer.” Li, Y.; Han, W.; He, C.; Jiang, X.; Fan, Y.;Lin, W. Bioconjugate Chem. 2021, 32, 2318-2326. “Nanoscale Metal-Organic Layers for Biomedical Applications.” Xu, Z,; Luo, T.;Lin, W. Acc. Mater. Res. 2021, 2, 944-953. “Multi-Cuprous Centers Supported on a Titanium-Based Metal-Organic Framework Catalyze CO2 Hydrogenation to Ethylene.” Zeng, L.; Cao, Y.; Li, Z,; Dai, Y.; Wang, Y.; An, B.; Zhang, J.; Li, H.; Zhou, Y.; Lin, W.; Wang, C. ACS Catal. 2021, 11, 11696-11705. “Nanoscale Metal-Organic Framework Confines Zinc-Phthalocyanine Photosensitizers for Enhanced Photodynamic Therapy.” Luo, T.; Nash, G.T.; Xu, Z.; Jiang, X.; Liu, J.;Lin, W. J. Am. Chem. Soc. 2021, 143, 34, 13519–13524. “Monte Carlo Simulations Reveal New Design Principles for Efficient Nanoradiosensitizers Based on Nanoscale Metal-Organic Frameworks.” Xu, Z.; Ni, K.; Mao, J.; Luo, T.;Lin, W. Adv. Mater. 2021, 40, e2104249. doi: 10.1002/adma.202104249. “From 3D to 2D: Multifunctional Metal-Organic Layers for Organic Synthesis.” Feng, X.;Lin, W. Matter, 2021, 4, 2683-2685. doi: 10.1016/j.matt.202107.009. “Chemical Looping Conversion of Ethane to Ethanol via Photo-assisted Nitration of Ethane.” He, X.; Li, Z.; Hu, H.; Chen, J.; Zeng, L.; Zhang, J.; Lin, W.; Wang, C. Cell Rep. Phys. Sci. 2021, 2, 100481. “Neighboring Zn-Zr Sites in a Metal-Organic Framework for CO2 Hydrogenation.” Zhang, J.; An, B.; Li, Z.; Cao, Y.; Dai, Y.; Wang, W.; Zeng, L.; Lin, W.; Wang, C. J. Am. Chem. Soc. 2021, 143, 8829-8837. doi: 10.1021/jacs.1c03283. “Dimensional Reduction of Lewis Acidic Metal-Organic Frameworks for Multicomponent Reactions.” Feng, X.; Song, Y.;Lin, W. J. Am. Chem. Soc. 2021, 143, 8184-8192. doi: 10.1021/jacs.1c03561. “H-Bond Mediated Selectivity Control of Formate versus CO during CO2 Photoreduction with Two Cooperative Cu/X Sites.” Zhuo, T.-C.; Song, Y.; Zhuang, G.-L.; Chang, L.-P.; Yao, S.; Zhang, W.; Wang, Y.; Wang, P.; Lin, W.; Lu, T.-B.; Zhang, Z.-M. J. Am. Chem. Soc. 2021, 143, 6114-6122. “Bifunctional Metal-Organic Layer with Organic Dyes and Iron Centers for Synergistic Photoredox Catalysis.” Quan, Y.; Shi, W.; Song, Y.; Jiang, X.; Wang, C.;Lin, W. J. Am. Chem. Soc. 2021, 143, 3075-3080. doi: 10.1021/jacs.1c01083. “Nanoscale Metal-Organic Layer Isolates Phthalocyanines for Efficient Mitochondria-Targeted Photodynamic Therapy.” Nash, G.T.; Luo, T.; Lan, G.; Ni, K.; Kaufmann, M.; Lin, W. J. Am. Chem. Soc. 2021, 143, 2194-2199. doi: 10.1021/jacs.0c12330. “Integration of Earth-Abundant Photosensitizers and Catalysts in Metal-Organic Frameworks Enhances Photocatalytic Aerobic Oxidation.” Feng, X.; Pi, Y.; Song, Y.; Xu, Z.; Li, Z.; Lin, W. ACS Catal. 2021, 11, 1024-1032 doi.org: 10.1021/acscatal.0c05053. “Supramolecular metal-based nanoparticles for drug delivery and cancer therapy.” Jiang, X.; He, C.; Lin, W. Current Opinion Chem. Biol. 2021, 61, 143-153. “Nanoscale Metal-Organic Layers Detect Mitochondrial Dysregulation and Chemoresistance via Ratiometric Sensing of Glutathione and pH.” Ling, X.; Gong, D.; Shi, W.; Xu, Z.; Han, W.; Lan, G.; Li, Y.; Qin, W.; Lin, W. ; J. Am. Chem. Soc. 2021, 143, 1294-1289. doi: 10.1021/jacs.0c11764. “Point-source burst of coordination polymer nanoparticles for tri-modality cancer therapy.” Ling, X.; Han, W.; Jiang, X.; Chen, X.; Rodriguez, M.; Zhu, P.; Wu, T.; Lin, W. Biomaterials 2021, 270: 120690. doi: 10.1016/j.biomaterials.2021.120690. etal-organic layers as reusable solid fluorination reagents and heterogeneous catalysts for aromatic fluorination.” Shi, W.; Zeng, L.; Cao, L.; Huang, Y.; Wang, C.: Lin, W. Nano. Res. 2021, 14, 473-478. “Rational Construction of an Artificial Binuclear Copper Monooxygenase in a Metal-organic Framework.” Feng, X.; Song, Y.; Chen, J.S.; Xu, Z.; Dunn, S.J.; Lin, W. J. Am. Chem. Soc. 2021, 143, 1107-1118. doi: 10.1021/jacs.0c11920. “Sequential Treatment of Bioresponsive Nanoparticles Elicits Antiangiogenesis and Apoptosis and Synergizes with A CD40 Agonist for Antitumor Immunity.” Ling, X.; Jiang, X.; Li, Y.; Han, W.; Rodriguez, M.; Xu, Z.; Lin, W. ACS Nano, 2021, 15, 765-780. doi: 10.1021/acsnano.0c07132. “Metal-Organic Layers Hierarchically Integrate Three Synergistic Active Sites for Tandem Catalysis.” Quan, Y.; Lan, G.; Shi, W.; Xu, Z.; Fan, F.; You, E.; Jiang, X.; Wang, W.; Lin, W. Angew. Chem. Int. Ed. 2021, 133, 6, 3152-3157. https://doi.org/10.1002/anie.202011519. “Metal–organic frameworks embedded in a liposome facilitate overall photocatalytic water splitting.” Hu, H.; Wang, Z.; Cao, L.; Zeng, L.; Zhang, C.; Lin, W.; Wang, C. Nat. Chem. 2021, 13, 358–366. “Metal-Organic Frameworks for Catalytic Applications.” Song, Y.; Feng, X.; Lin, W. Comp. Coord. Chem. III, 2021, 228-259. “Tunable Cobalt-Polypyridyl Catalysts Supported on Metal–Organic Layers for Electrochemical CO2 Reduction at Low Overpotentials.” Guo, Y.; Wang, Y.; Shen, Y.; Cai, Z.; Li, Z.; Liu, J.; Lin, W.; Wang, C. J. Am. Chem. Soc. 2020, 142, 21493-21501. https://doi.org/10.1021/jacs.0c10719. “Transforming Hydroxide-Containing Metal-Organic Framework Nodes for Transition Metal Catalysis.” Feng, X.; Song, Y.; Lin, W. Trends Chem. 2020, https://doi.org/10.1016/B978-0-08-102688-5.00025-8. “Metal-Organic Frameworks for Catalytic Applications.” Song, Y.; Feng, X.; Lin, W. Comp. Coord. Chem. III, https://doi.org/10.1016/B978-0-08-102688-5.00025-8. “Nanoscale Metal-organic Frameworks for X-ray Activated in situ Cancer Vaccination.” Ni, K.; Lan, G1, Guo, N.; Culbert, A.; Luo, T.; Wu, T.; Weichselbaum, R.R.; Lin, W. Sci. Adv. 2020, 6: eabb5223. “Nanoscale Metal-Organic Framework Co-delivers TLR-7 Agonists and Anti-CD47 Antibodies to Modulate Macrophages and Orchestrate Cancer Immunotherapy.” Ni, K.; Luo, T.; Culbert, A.; Kaufmann, M.; Jiang, X.; Lin, W. J. Am. Chem. Soc. 2020, 142, 12579-12584. doi: 10.1021/jacs.0c05039. “Nanoscale Metal-Organic Frameworks for Cancer Immunotherapy.” Ni, K.; Luo, T.; Nash, G.; Lin, W. Acc. Chem. Res. 2020, 53(9), 1739-1748. “Metal-Organic Frameworks Integrate Cu Photosensitizers and SBU-Supported Fe Catalysts for Photocatalytic Hydrogen Evolution.” Pi, Y.; Feng, X.; Song, Y.; Xu, Z.; Li, Z.; Lin, W. J. Am. Chem. Soc. 2020, 142, 10302-10307. doi: 10.1021/jacs.0c03906. “Nanoscale Metal-Organic Frameworks Generate Reactive Oxygen Species for Cancer Therapy.” Ni, K.; Lan, G.; Lin, W. ACS Cent. Sci. 2020, 6, 861-868. doi: 10.1021/acscentsci.0c00397. “Metal-Organic Framework with Dual Active Sites in Engineered Mesopores for Bioinspired Synergistic Catalysis.” Quan, Y.; Song, Y.; Shi, W.; Xu, Z.; Chen, J.S.; Jiang, X.; Wang, C.; Lin, W. J. Am. Chem. Soc. 2020, 142, 8602-8607. doi: 10.1021/jacs.0c02966. “Machine Learning-Guided Morphology Engineering of Nanoscale Metal-Organic Frameworks.” Chen, P.; Tang,Z.; Zeng, Z.; Hu, X.; Xiao, L.; Liu, Y.; Qian, X.; Deng, C.; Huang, R.; Zhang, J.; Bi, Y.; Zhou, Y.; Zhou, D.; Wang, C.; Lin, W. Matter 2020, 6, 1651-1666. “Nanoscale Metal-Organic Frameworks Stabilize Bacteriochlorins for Type I and Type II Photodynamic Therapy.” Luo, T.; Ni, K.; Culbert, A.; Lan, G.; Li, Z.; Jiang, X.; Kaufmann, M.; Lin, W. J. Am. Chem. Soc. 2020, 142, 7334-7339. doi: 10.1021/jacs.0c02129 “Biomimetic Nanoscale Metal-Organic Framework Harnesses Hypoxia for Effective Cancer Radiotherapy and Immunotherapy.” Ni, K.; Lan, G.; Song, Y.; Hao, Z.; Lin, W. Chem. Sci., 2020, 11, 7641-7653. “Cerium-based Metal-Organic Layers Catalyze Hydrogen Evolution Reaction through Dual Photoexcitation.” Song, Y.; Pi, Y.; Feng, X.; Ni, K.; Xu, Z.; Chen, J.S.; Li, Z,; Lin, W. J. Am. Chem. Soc. 2020, 142, 6866-6871. doi: 10.1021/jacs.0c00679. “Highly Dispersed Ni Catalyst on Metal-Organic Framework-Derived Porous Hydrous Zirconia for CO2 Methanation.” Zeng, L.; Wang, Y.; Li, Z.; Song, Y.; Zhang, J.; Wang, J.; He, X.; Wang, C.; Lin, W. ACS Appl. Mater. Interfaces. 2020, 12, 17436-17442. doi: 10.1021/acsami.9b23277. “Multistep Engineering of Synergistic Catalysts in a Metal-Organic Framework for Tandem C-O Bond Cleavage.” Song, Y.; Feng, X.; Chen, J.S.; Brzezinski, C.; Xu, Z.; Lin, W. J. Am. Chem. Soc. 2020, 142, 4872-4882. doi: 10.1021/jacs.0c00073. “Intratumoral Accumulation of Gut Microbiota Facilitates CD47-based Immunotherapy via STING Signaling.” Shi, Y.; Zheng, W.; Yang, K.; Harris, K.; Ni, K.; Xue, L.; Lin, W.; Chang, E.; Weichselbaum, R.R.; Fu, Y.-X. J. Exp. Med. 2020, 217, e20192282. doi: 10.1084/jem.20192282. “Metal-Organic Layers for Synergistic Lewis Acid and Photoredox Catalysis.” Quan, Y.; Lan, G.; Fan, Y.; Shi, W.; You, E.; Lin, W. J. Am. Chem. Soc. 2020, 142, 1746-1751. doi: 10.1021/jacs.9b12593. “Metal-Organic Frameworks Significantly Enhance Photocatalytic Hydrogen Evolution and CO2 Reduction with Earth-Abundant Copper Photosensitizers.” Feng, X.; Pi, Y.; Song, Y.; Brzezinski, C.; Xu, Z.; Li, Z.; Lin, W. J. Am. Chem. Soc. 2020, 142, 690-695. doi: 10.1021/jacs.9b12229. “Photo-Activation of Cu Centers in Metal-Organic Frameworks for Selective CO2 Conversion to Ethanol.” Zeng, L.; Wang, Z.; Wang, Y.; Wang, J.; Guo, Y.; He, X.; Wang, C.; Lin, W. J. Am. Chem. Soc. 2020, 142, 75-79. doi: 10.1021/jacs.9b11443. “Nanoscale Metal-organic Frameworks Mediate Photodynamic Therapy and Deliver CpG Oligodeoxynucleotides to Enhance Antigen Presentation and Cancer Immunotherapy.” Ni, K.; Luo, T.; Lan, G.; Culbert, A.; Song, Y.; Wu, T.; Jiang, X.; Lin, W. Angew. Chem. Int. Ed. 2020, 132, 1124-1128. DOI: 10.1002/anie.201911429. “Photo-Activation of Cu Centers in Metal-Organic Frameworks for Selective CO2 Conversion to Ethanol.” Zeng, L.; Wang, Z.; Wang, Y.; Wang, J.; Guo, Y.; He, X.; Wang, C.; Lin, W. J. Am. Chem. Soc. 2020, DOI: 10.1021/jacs.9b11443. “Multifunctional Nanoscale Metal-Organic Layers for Ratiometric pH and Oxygen Sensing.” Lan, G.; Ni, K.; You, E.; Wang, M.; Culbert, A.; Jiang, X.; Lin, W. J. Am. Chem. Soc. 2019, 141, 18964-18969. DOI: 10.1021/jacs.9b11024. “Cooperative Stabilization of the [Pyridinium-CO2-Co] Adduct on a Metal-Organic Layer Enhances Electrocatalytic CO2 Reduction.” Guo. Y.; Shi, W.; Yang, H.; He, Q.; Zeng, Z.; Ye, J.Y.; He, X.; Huang, R.; Wang, C.; Lin, W. J. Am. Chem. Soc. 2019, 141, 17875-17883. DOI: 10.1021/jacs.9b09227. “Metal-Organic Layers as Multifunctional Two-Dimensional Nanomaterials for Enhanced Photoredox Catalysis.” Lan, G.; Quan, Y.; Wang, M.; Nash, G.T.; You, E.; Song, Y.; Veroneau, S.S.; Jiang, X.; Lin, W. J. Am. Chem. Soc. 2019, 141, 15767-15772. DOI: 10.1021/jacs.9b08956. “Strongly Lewis Acidic Metal-Organic Frameworks for Continuous Flow Catalysis.” Ji, P.; Feng, X.; Oliveres, P.; Li, Z.; Murakami, A.; Wang, C.; Lin, W. J. Am. Chem. Soc. 2019, 141, 14878-14888. DOI: 10.1021/jacs.9b07891. “Titanium Hydroxide Secondary Building Units in Metal-Organic Frameworks Catalyze Hydrogen Evolution under Visible Light.” Song, Y.; Li, Z.; Zhu, Y.; Feng, X.; Chen, J.S.; Kaufmann, M.; Wang, C.; Lin, W. J. Am. Chem. Soc. 2019, 141, 12219-12223. DOI: 10.1021/jacs.9b05964. “Metal-Organic Framework Stabilizes a Low-Coordinate Iridium Complex for Catalytic Methane Borylation.” Feng, X.; Song, Y.; Li, Z.; Kaufmann, M.; Pi, Y.; Chen, J.S.; Xu, Z.; Li, Z.; Wang, C.; Lin, W. J. Am. Chem. Soc. 2019, 141, 11196-11203. DOI: 10.1021/jacs.9b04285. “Cooperative Copper Centers in a Metal-Organic Framework for Selective Conversion of CO2 to Ethanol.” An, B.; Li, Z.; Song, Y.; Zhang, J.; Zeng,L.; Wang, C.; Lin, W. Nat. Catal. 2019, 2, 709-717. DOI: 10.1038/s41929-019-0308-5. “Ultrathin metal-organic layer-mediated radiotherapy-radiodynamic therapy enhances immunotherapy of metastatic cancers.” Ni, K.; Lan, G.; Chan, C.; Duan, X.; Guo, N.; Samuel S. Veroneau, S.S. Weichselbaum, R.R.; Lin, W. Matter, 2019, 1, 1331-1353. DOI: 10.1016/j.matt.2019.06.007. “Nanoscale Metal-Organic Framework Mediates Hormone- and Light-Triggered Radical Therapy to Enhance Cancer Immunotherapy.” Ni, K.; Theint Aung, T.; Li, S.; Fatuzzo, N.; Liang, X.; Lin, W. Chem. 2019, 5, 1892-1913. DOI: 10.1016/j.chempr.2019.05.013. “Systemic miRNA delivery by nontoxic nanoscale coordination polymers limits epithelial-to-mesenchymal transition and suppresses liver metastases of colorectal cancer.” Chan, C.; Guo, N.; Duan, X.; Han, W.; Xue, L.; Bryan, D.; Wightman, S. C.; Khodarev, N.N.; Weichselbaum, R.R.; Lin, W. Biomaterials, 2019, 210, 94-104. DOI: 10.1016/j.biomaterials.2019.04.028. “Nanoscale Metal-Organic Framework Hierarchically Combines High-Z Components for Multifarious Radio-enhancement.” Lan, G.; Ni, K.; Veroneau, S.S.; Luo, T.; You, E.; Lin, W. J. Am. Chem. Soc. 2019, 141, 6859-6863. DOI: 10.1021/jacs.9b03029. “Luminescence Enhancement of cis-[Ru(bpy)2(py)2]2+ via Confinement within a Metal-Organic Framework.” Micheroni, D.; Lin, Z.; Chen, Y.-S.; Lin, W. Inorg. Chem. 2019, 58, 7645-7648. DOI: 10.1021/acs.inorgchem.9b00396. “Immunostimulatory Nanomedicines Synergize with Checkpoint Blockade Immunotherapy to Eradicate Colorectal Tumors.” Duan, X.; Chan, C.; Han, W.; Guo, N.; Weichselbaum, R.R.; Lin, W. Nat. Commun. 2019, 10:1899. DOI: 10.1038/s41467-019-09221-x. “A pyrocarbonate intermediate for CO2 activation and selective conversion in bifunctional metal-organic frameworks.” An, B.; Meng, Y.; Li, Z.; Hong, Y.; Wang, T.; Wang, S.; Lin, J.; Wang, C.; Wan, S.; Wang, Y.; Lin, W. J. Catal. 2019, 373, 37-47. DOI: 10.1016/j.jcat.2019.03.008. “Titanium-Based Nanoscale Metal-Organic Framework for Type I Photodynamic Therapy.” Guangxu Lan, G.; Ni, K.; Veroneau, S.S.; Feng, X.; Nash, G.T.; Luo, T.; Xu, Z.; Lin, W. J. Am. Chem. Soc. 2019, 141, 4204-4208. DOI: 10.1021/jacs.8b13804. “Aluminum Hydroxide Secondary Building Units in a Metal-Organic Framework Support Earth-Abundant Metal Catalysts for Broad-Scope Organic Transformations.” Feng, X.; Ji, P.; Li, Z.; Drake, T.; Oliveres, P.; Chen, E.Y.; Song, Y.; Wang, C.; Lin, W. ACS Catal. 2019, 9, 3327-3337. DOI: 10.1021/acscatal.9b00259. “Metal-Organic Framework Nodes Support Single-Site Nickel(II)-Hydride Catalysts for the Hydrogenolysis of Aryl Ethers.” Song, Y.; Li, Z.; Ji, P.; Kaufmann, M; Feng, X.; Chen, J.S.; Wang, C.; Lin, W. ACS Catal. 2019, 9, 1578-1583. DOI: 10.1021/acscatal.8b04611. “Cobalt-Bridged Secondary Building Units in a Titanium Metal-Organic Framework Catalyze Cascade Reduction of N-Heteroarenes.” Feng, X.; Song, Y.; Chen, J.S.; Li, Z.; Chen, E.Y.; Kaufmann, M.; Wang, C.; Lin, W. Chem. Sci. 2019, 10, 2193-2198. DOI: 10.1039/c8sc04610g. “Metal-Organic Frameworks in Solid-Gas Phase Catalysis.” Wang, C.; An, B.; Lin, W. ACS Catal. 2019, 9, 130-146. DOI: 10.1021/acscatal.8b04055. “Nanoscale Metal-Organic Frameworks for Phototherapy of Cancer.” Lan, G.; Ni, K.; Lin, W. Coord. Chem. Rev. 2019, 379, 65-81. DOI: 10.1016/j.ccr.2017.09.007. “Nanoparticle‐mediated Immunogenic Cell Death Enables and Potentiates Cancer Immunotherapy.” Duan, X.; Chan, C.; Lin, W. Angew. Chem. Int. Ed. 2019, 58, 670-680. DOI: 10.1002/anie.201804882. “Nanoscale Metal–Organic Layers for Radiotherapy–Radiodynamic Therapy.” Lan, G.; Ni, K.; Veroneau, S.S.; Song, Y.; Lin, W. J. Am. Chem. Soc. 2018, 140, 16971-16975. DOI: 10.1021/jacs.8b11593. “Efficient Electrocatalytic Proton Reduction with Carbon Nanotube-Supported Metal–Organic Frameworks.” Micheroni, D.; Lan, G.; Lin, W. J. Am. Chem. Soc. 2018, 140, 15591-15595. DOI: 10.1021/jacs.8b09521. “A Dynamically Stabilized Single-Nickel Electrocatalyst for Selective Reduction of Oxygen to Hydrogen Peroxide.” Wang, T.; Zeng, Z.; Cao, L.; Li, Z.; Hu, X.; An, B.; Wang, C.; Lin, W. Eur. J. Chem. 2018, 24, 17011-17018. DOI: 10.1002/chem.201804312. “Two-Dimensional Metal-Organic Layers on Carbon Nanotubes to Overcome Conductivity Constraint in Electrocatalysis.” Yang, L.; Cao, L.; Huang, R.; Hou, Z.W.; Qian, X.Y.; An, B.; Xu, H.C.; Lin, W.; Wang, C. ACS Appl. Mater. Interfaces. 2018, 10, 36290-36296. DOI: 10.1021/acsami.8b13356. “Nanoscale Metal-Organic Frameworks for Mitochondria-Targeted Radiotherapy-Radiodynamic Therapy.” Ni, K.; Lan, G.; Veroneau, S.S.; Duan, X.; Song, Y.; Lin, W. Nat. Commun. 2018, 9: 4321. DOI: 10.1038/s41467-018-06655-7. “Merging Photoredox and Organometallic Catalysts in a Metal-Organic Framework Significantly Boosts Photocatalytic Activities.” Zhu, Y.-Y.; Lan, G.; Fan, Y.; Veroneau, S.S.; Song, Y.; Micheroni, D.; Lin, W. Angew. Chem. Int. Ed. Engl. 2018, 57, 14090-14094. DOI: 10.1002/anie.201809493. “Photosensitizing Metal-Organic Layers for Efficient Sunlight-Driven Carbon Dioxide Reduction.” Lan, G.; Li, Z.; Veroneau, S.S.; Zhu, Y.-Y.; Xu, Z.; Wang C.; Lin W. J. Am. Chem. Soc. 2018, 140, 12369-12373. DOI: 10.1021/jacs.8b08357. “Site Isolation in Metal-Organic Frameworks Enables Novel Transition Metal Catalysis.” Drake, T.; Ji, P.; Lin, W. Acc. Chem. Res. 2018, 51, 2129-2138. DOI: 10.1021/acs.accounts.8b00297. “Metal-Organic Layers Efficiently Catalyze Photoinduced Polymerization under Visible Light.” Xu, R.; Cai, Z.; Lan, G.; Lin, W. Inorg. Chem. 2018, 57, 10489-10493. “Tuning Lewis Acidity of Metal-Organic Frameworks via Perfluorination of Bridging Ligands: Spectroscopic, Theoretical, and Catalytic Studies.” Ji, P.; Drake, T.; Murakami, A.; Oliveres, P.; Skone, J.H.; Lin, W. J. Am. Chem. Soc. 2018, 140, 10553-10561. DOI: 10.1021/jacs.8b05765. “Metal-Organic Layers Catalyze Photoreactions without Pore Size and Diffusion Limitations." Xu, R.; Drake, T.; Lan, G.; Lin, W. Eur. J. Chem. 2018, DOI: 10.1002/chem.201803635. “Nanoscale Metal-Organic Framework Overcomes Hypoxia for Photodynamic Therapy Primed Cancer Immunotherapy.” Lan, G.; Ni, K.; Xu, Z.; Veroneau, S.S.; Song, Y.; Lin, W. J. Am. Chem. Soc. 2018, 140, 5670-5673. “Electron Injection from Photoexcited Metal-Organic Framework Ligands to Ru2 Secondary Building Units for Visible-Light-Driven Hydrogen Evolution.” Lan, G.; Zhu, Y.-Y.; Veroneau, S.S.; Xu, Z.; Micheroni, D.; Lin, W. J. Am. Chem. Soc. 2018, 140, 5326-5329. “Nanoscale Metal-Organic Frameworks Enhance Radiotherapy to Potentiate Checkpoint Blockade Immunotherapy.” Ni, K.; Lan, G.; Chan, C.; Quigley, B.; Lu, K.; Aung, T.; Guo, N.; La Riviere, P.; Weichselbaum, R.R.; Lin, W. Nat. Commun. 2018, DOI: 10.1038/s41467-018-04703-w. “Low-dose X-ray Radiotherapy-Radiodynamic Therapy via Nanoscale Metal-Organic Frameworks Enhances Checkpoint Blockade Cancer Immunotherapy.” Lu, K.; He, C.; Guo, N.; Chan, C.; Ni, K.; Tang, H.; Pelizzari, C.; Fu, Y.-X.; Weichselbaum, R.R.; Lin, W. Nat. Biomed. Eng. 2018, DOI: 10.1038/s41551-018-0203-4. “Nanoscale Metal-Organic Frameworks for Therapeutic, Imaging, and Sensing Applications.” Lu, K.; Aung, T.; Guo, N.; Weichselbaum, R.R.; Lin, W. Adv. Mater. 2018, 30, e1707634. DOI: 10.1002/adma.201707634. “Titanium(III)-Oxo Clusters in a Metal-Organic Framework Support Single-Site Co(II)-Hydride Catalysts for Arene Hydrogenation.”Ji, P.; Song, Y.; Drake, T.; Veroneau, S.S.; Lin, Z.; Pan, X.; Lin, W. J. Am. Chem. Soc. 2018, 140, 443-440. DOI: 10.1021/jacs.7b11241 “Metal-Organic Layers Stabilize Earth-Abundant Metal-Terpyridine Diradical Complexes for Catalytic C-H Activation.” Lin, Z.; Thacker, N.C.; Sawano, T.; Drake, T.; Ji, P.; Lan, G.; Cao, L.; Liu, S.; Wang, C.; Lin, W. Chem. Sci. 2018, 9, 143-151. DOI: 10.1039/C7SC03537C.

推荐链接
down
wechat
bug