研究领域
发展技术预测、分析和控制复杂分子体系的时间演化行为。精确的化学动力学模型是反应工程的核心,具有重要的科学和工程意义,也有重要的社会价值。实践中大量的商业决策和政策依赖于精确动力学模型。比如蒙特利尔协定书在世界范围内全面限制氟制冷剂使用,就建基于精确的臭氧层化学动力学模型。
我们致力于发展:
1 高精度&高速&面向复杂体系的速率常数预测、复杂体系动力学模型建立、验证技术;
2 反应器的跨尺度模拟和设计技术;CFD-化学动力学耦合技术;
3 信息技术、传感器技术和智能反应器技术在能源、环境、健康领域的应用。
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
Molecular simulation of flavin adenine dinucleotide immobilized on charged single-walled carbon nanotubes for biosensor applications Yang, G ; Kang, ZZ ; Ye, XS ; Wu, T* ; Zhu, Q,Biomaterials,2012,33,8757
Adsorption of Insulin Peptide on Charged Single-Walled Carbon Nanotubes: Significant Role of Ordered Water Molecules , Jia-Wei Shen, Tao Wu*, Qi Wang, Yu Kang, Xin Chen, ChemPhysChem, 2009,10,1260-1269
Molecular Simulation of Protein Adsorption and Desorption on Hydroxyapatite Surfaces, Jia-Wei Shen, Tao Wu*, Qi Wang, Hai-Hua Pan, Biomaterials(Leading Opinion Paper,2008-The year in images), 2008, 29(5), 513-532
Diffusion dynamics of water controlled by topology of potential energy surface inside carbon nanotubes, Ying-Chun Liu, Jia-Wei Shen, Keith E. Gubbins, Tao Wu*, Q Wang, Phys. Rev. B(Selected by Virtual J. Nanoscale Sci & Tech 08-04-14), 2008,77,125438
Shield effect of silicate on adsorption of LRAP onto silicon-doped hydroxyapatite (100) surface, Chen Xin, Wu Tao*, Wang Qi, Shen Jiawei, Biomaterials, 2008, 29,2423
Molecular Simulation of Protein Adsorption and Desorption on Hydroxyapatite Surfaces, Jia-Wei Shen, Tao Wu, Qi Wang, Hai-Hua Pan, Biomaterials(2008-The year in images), 2008, 29(5), 513-532
Adsorption of Leucine-Rich Amelogenin Protein on Hydroxyapatite (001) Surface through -COO- Claws, Xin Chen, Qi Wang, Jiawei Shen, Haihua Pan, Tao Wu*, J. Phys. Chem. C, 111(3), 1284-1290(2007)
Understanding Adsorption-Desorption Dynamics of BMP-2 on Hydroxyapatite (001) Surface, Xiuli Dong, Qi Wang, Tao Wu*, Haihua Pan, Biophys. J., 2007, 93(3), 750-759
Accurate potential energy surface and quantum reaction rate calculation for H + CH4-H2 + CH3 reaction,J. Chem. Phys., Tao Wu; HJ Werner; U Manthe, 124, 164307,2006
First-principles theory for the H+CH4 -> H-2+CH3 reaction, Wu, T; Werner, HJ; Manthe, U, Science, 306 (5705): 2227-2229