近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
Wu, W.; Su, P.; Shaik, S.; Hiberty, P. C., Classical Valence Bond Approach by Modern Method, Chem. Rev. 2011, 111, 7557-7593.
Shaik, S.; Danovich, D.; Wu, W.; Hiberty, P. C., New Concepts in Chemical Bonding: Charge-Shift Bonding and Its Manifestation in Chemistry, Nature Chem. 2009, 1, 443-449.
Wu, W.; Ma, B.; Wu, J.; Schleyer, P. von R.; Mo, Y., Is Cyclopropane Really the σ-Aromatic Paradigm? Chem. Euro. J. 2009, 15, 9730-9736.
Wu, W.; Gu, J.; Song, J.; Shaik, S.; Hiberty, P. C., The “Inverted” Bond in [1.1.1]Propellane is a Charge-Shift Bond. Angew. Chem. Int. Ed. 2009, 48, 1407-1410.
Gu, J.; Lin, Y.; Ma, B.; Wu, W.; Shaik, S., The Covalent Excited States of Polyenes C2nH2n+2 (n = 2-8) and Polyenyl Radicals C2n-1H2n+1 (n = 2-8): An ab initio Valence Bond Study. J. Chem. Theory Comput. 2008, 4, 2101-2107.
Chen, Z.; Song, L.; Song, J.; Wu, W., A Valence Bond Approach Based on Lewis Structures. J. Theor. Comput. Chem. 2008, 7, 655-668.
Song, L.; Song, J.; Mo, Y.; Wu, W., An Efficient Algorithm for Energy Gradients and Orbital Optimization in Valence Bond Theory. J. Comput. Chem. 2008, 30, 399-406.
Su, P.; Wu, W.; Kelly, C.P.; Cramer, C.J.; Truhlar, D.G., VBSM: A Solvation Model Based on Valence Bond Theory. J. Phys. Chem. A, 2008, 112, 12761-12768.
Li, C.; Zhang, L.; Zhang, C.; Hirao, H.; Wu, W.; Shaik, S., Which Oxidant is Really Responsible for Sulfur Oxidation by Cytochrome P450? Angew. Chem. Int. Ed. 2007, 46, 8168-8170.
Song, L.; Wu, W.; Hiberty, P.C.; Shaik, S., Identity SN2 Reactions X- + CH3X XCH3 + X- (X = F, Cl, Br, and I) in Vacuum and in Aqueous Solution: A Valence Bond Study. Chem. Euro. J. 2006, 12, 7458-7466.
Hiberty, P.C.; Megret, C.; Song, L.; Wu, W.; Shaik, S., Barriers of Hydrogen Abstraction vs Halogen Exchange an Experimental Manifestation of Charge-Shift Bonding. J. Am. Chem. Soc. 2006, 128, 2836-2843.
Li, C.; Wu, W.; Kumar, D.; Shaik, S., Kinetic Isotope Effect is a Sensitive Probe of Spin State Reactivity in C-H Hydroxylation of N, N-Dimethyl Aniline by Cytochrome P450. J. Am. Chem. Soc. 2006, 128, 394-395.
Song, L.; Mo, Y.; Zhang, Q.; Wu, W., XMVB: A Program for ab initio Nonorthogonal Valence Bond Computations. J. Comput. Chem., 2005, 26, 514-521.
Mo, Y.; Song, L.; Wu, W.; Zhang, Q., Charge Transfer in the Electron Donor-Acceptor Complex BH3NH3. J. Am. Chem. Soc. 2004, 126, 3974-3982.
Song, L.; Wu, W.; Zhang, Q.; Shaik, S., VBPCM: A Valence Bond Method that Incorporates a Polarizable Continuum Model. J. Phys. Chem. A. 2004, 108, 6017-6024.
Su, P.; Song, L.; Wu, W.; Hiberty, P. C.; Shaik, S., Valence Bond Calculations of Hydrogen Transfer Reactions: A General Predictive Pattern Derived from Theory. J. Am. Chem. Soc. 2004, 126, 13539-13549.
Luo, Y.; Song, L.; Wu, W.; Danovich, D.; Shaik, S., The Ground and Excited States of Polyenyl Radicals C2n-1H2n+1 (n = 2-13): A Valence Bond Study. Chem. Phys. Chem., 2004, 5, 515-528.
Mo, Y.; Wu, W.; Song, L.; Lin, M.; Zhang, Q.; Gao, J., The Magnitude of Hyperconjugation in Ethane: a Perspective from ab initio Valence Bond Theory. Angew. Chem. Int. Ed. 2004, 43, 1986-1990; Andew. Chem. 2004,116, 2020-2024.
Song, L.; Wu, W.; Hiberty, P. C.; Danovich, D.; Shaik, S., An Accurate Barrier for the Hydrogen Exchange Reaction from Valence Bond Theory: Is This Theory Coming of Age? Chem. Eur. J. 2003, 9, 4540-4547.
Wu, W.; Mo, Y.; Cao, Z.; Zhang, Q., A Spin-Free Approach for Valence Bond Theory and its Application. Valence Bond Theory, (D. L. Cooper ed.), Elsevier Science, Amsterdam, 2002, 143.
Wu, W.; Shaik, S.; Jr, S., W. H, Comparative Study of Identity Proton-Transfer Reactions between Simple Atoms or Groups by VB Methods. J. Phys. Chem. A. 2002, 106, 11616-11622.
Wu, W.; Song, L.; Cao, Z.; Zhang, Q.; Shaik, S., Valence Bond Configuration Interaction: a Practical ab initio Valence Bond Method that Incorporates Dynamic Correlation. J. Phys. Chem. A. 2002, 106, 2721-2726.
Wu, W.; Luo, Y.; Song, L.; Shaik, S., VBDFT(s)-A Semi-Empirical Valence Bond Method: Applications to Linear Polyenes Containing Oxygen and Nitrogen Heteroatom. Phys. Chem. Chem. Phys. 2001, 3, 5459-5465.