个人简介
大学开始受教育经历
2005年-2008年,南京师范大学,数学科学学院,博士
2002年-2005年,南京师范大学,数学科学学院,硕士
1998年-2002年,江南大学,理学院,本科
研究工作经历
2011/04-至今, 南京信息工程大学,数学与统计学院,副教授
2011/06-2011/12, 美国密西西比州立大学,数学与统计学院,访问学者
2008/09-2011/04, 南京信息工程大学,数学与统计学院,讲师
研究领域
从事非线性泛函分析及其在微分方程中的应用的相关研究
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
1. Z.Y. Wang, J.H. Zhang, New existence results on periodic solutions of non-autonomous second order Hamiltonian systems, Applied Mathematics Letters 79, 43-50, 2018.
2. G.X. Ning, Z.Y. Wang, J.H. Zhang, Existence and multiplicity results for the fractional p–Laplacian equation with Hardy–Sobolev exponents, Differential Equations & Applications 10, 87-114, 2018.
3. J.X. Xiao, Z.Y. Wang, Juan Liu, ,Hausdorff product measures and C^1-solution sets of abstract semilinear functional differential inclusions, Topological Methods in Nonlinear Analysis 49, 273-298, 2017.
4. D. Pa?ca, Z.Y. Wang, On periodic solutions of non-autonomous second order Hamiltonian systems with (q,p)-Laplacian, Electronic Journal of Qualitative Theory of Differential Equations, 106, 1–9, 2016.
5. Z.Y. Wang, J.X. Xiao. On periodic solutions of subquadratic second order non-autonomous Hamiltonian systems, Applied Mathematics Letters 40, 72-77, 2015.
6. D. Pa?ca, Z.Y. Wang, New existence results on periodic solutions of nonautonomous second order Hamiltonian systems with (q,p)-Laplacian, Bulletin of the Belgian Mathematical Society-Simon Stevin, 20, 155–166, 2013.
7. R. Cheng, J.H. Hu, Z.Y. Wang, Multiple solutions for semilinear resonance elliptic problems with nonconstant coefficients at infinity. Journal of Mathematical Physics 53, 123524, 2012.
8. Z.Y. Wang, J.H. Zhang, Periodic solutions for nonautonomous second order Hamiltonian systems with sublinear nonlinearity, Boundary Value Problems, 1, 1-14, 2011.
9. Z.Y. Wang, Subharmonic solutions for non-autonomous second-order sublinear Hamiltonian systems with p-laplacian, Electronic Journal of Differential Equations , 1, 1-14, 2011.
10. Z.Y. Wang, Subharmonic solutions for non-autonomous second-order sublinear Hamiltonian systems with p-Laplacian, Electronic Journal of Differential Equations, 1, 1-14, 2011.
11. Z.Y. Wang, J.H. Zhang, Periodic solutions of a class of second order non-autonomous Hamiltonian systems,Nonlinear Analysis: Theory, Methods & Applications , 72, 4480-4487, 2010.
12. Z.Y. Wang, J.H. Zhang, Z.T. Zhang, Periodic solutions of second order non-autonomous Hamiltonian systems with local superquadratic potential, Nonlinear Analysis: Theory, Methods & Applications , 70, 3672-3681, 2009.
13. S.H. Liang, J.H. Zhang, Z.Y. Wang, The existence of three positive solutions of m-point boundary value problems for some dynamic equations on time scales, Mathematical and Computer Modelling 49 1386-1393, 2009.
14. S.H. Liang, J.H. Zhang, Z.Y. Wang, The existence of multiple positive solutions for multi-point boundary value problems on the half-line, Journal of Computational and Applied Mathematics 228, 10-19. 2009.
15. Z.Y. Wang, J.H. Zhang, Periodic solutions of non-autonomous second order systems with p-Laplacian,Electronic Journal of Differential Equations, 1, 1-12, 2009.
16. Z.Y. Wang, J.H. Zhang, Existence and Iteration of Positive Solutions for One-Dimensional p-Laplacian Boundary Value Problems with Dependence on the First-Order Derivative, Boundary Value Problems, 1, 1-13, 2008.
17. S.H. Liang, J.H. Zhang, Z.Y. Wang, Existence of countably many positive solutions for nth-order m-point boundary value problems on time scales, Electronic Journal of Differential Equations, 1, 1-13, 2008.
18. Z.Y. Wang, J.H. Zhang, Positive solutions for one-dimensional p-Laplacian boundary value problems with dependence on the first order derivative, Journal of Mathematical Analysis and Applications, 314, 618-630, 2006.