近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
Zhu, Q.; Ge, Y.; Li, W.*; Ma, J.* Treating Polarization Effects in Charged and Polar Bio-Molecules Through Variable Electrostatic Parameters. J. Chem. Theory Comput. 2023, 19 (2), 396–411. https://doi.org/10.1021/acs.jctc.2c01130
Hong, B.; Fang, T.; Li, W.*; Li, S.* Predicting the Structures and Vibrational Spectra of Molecular Crystals Containing Large Molecules with the Generalized Energy-Based Fragmentation Approach. J. Chem. Phys. 2023, 158 (4), 044117. https://doi.org/10.1063/5.0137072
Zhao, D.; Liao, K.; Hong, B.; Li, W.*; Li, S.* Accurate and Efficient Prediction of Vibrational Circular Dichroism Spectra of Condensed-Phase Systems with the Generalized Energy-Based Fragmentation Method. Electron. Struct. 2023, 5 (1), 014001. https://doi.org/10.1088/2516-1075/acb1e7
Du, J.; Liao, K.; Ma, J.; Li, W.*; Li, S.* Generalized Energy-Based Fragmentation Approach for the Electronic Emission Spectra of Large Systems. J. Chem. Theory Comput. 2022, 18 (12), 7630–7638. https://doi.org/10.1021/acs.jctc.2c00911
Du, J.; Ma, Y.; Ma, J.; Li, S.; Li, W.* Transition Orbital Projection Approach for Excited State Tracking. J. Chem. Phys. 2022, 156 (21), 214104. https://doi.org/10.1063/5.0081207.
Liao, K.; Dong, S.; Cheng, Z.; Li, W.*; Li, S*. Combined Fragment-Based Machine Learning Force Field with Classical Force Field and Its Application in the NMR Calculations of Macromolecules in Solutions. Phys. Chem. Chem. Phys. 2022, 24 (31), 18559-18567. https://doi.org/10.1039/D2CP02192G
Cheng, Z.; Du, J.; Zhang, L.; Ma, J.*; Li, W.*; Li, S.* Building Quantum Mechanics Quality Force Fields of Proteins with the Generalized Energy-Based Fragmentation Approach and Machine Learning. Phys. Chem. Chem. Phys. 2022, 24 (3), 1326–1337. (Inside cover) https://doi.org/10.1039/D1CP03934B
Zhang, L.; Cheng, Z.; Li, W.*; Li, S.* Generalized Energy-Based Fragmentation Approach for the Accurate Binding Energies and Raman Spectra of Methane Hydrate Clusters. Chin. J. Chem. Phys. 2022, 35 (1), 167–176. https://doi.org/10.1063/1674-0068/cjcp2111256
Wang, Y.; Ni, Z.; Neese, F.; Li, W.; Guo, Y.*; Li, S.* Cluster-in-Molecule Method Combined with the Domain-Based Local Pair Natural Orbital Approach for Electron Correlation Calculations of Periodic Systems. J. Chem. Theory Comput. 2022, 18 (11), 6510–6521. https://doi.org/10.1021/acs.jctc.2c00412.
Li, Y.; Wang, D.; Fu, F.; Xia, Q.; Li, W.; Li, S.* Structures and Properties of Ionic Crystals and Condensed Phase Ionic Liquids Predicted with the Generalized Energy‐based Fragmentation Method. J. Comput. Chem. 2022, 43 (10), 704–716. https://doi.org/10.1002/jcc.26828
Li, S.; Li, W.; Jiang, Y.; Ma, J.; Fang, T.; Hua, W.; Hua, S.; Dong, H.; Zhao, D.; Liao, K.; Zou, W.; Ni, Z.; Wang, Y.; Shen, X.; Hong, B. LSQC Program, Version 2.5. Nanjing University, Nanjing 2022. https://itcc.nju.edu.cn/lsqc/
Li, W.; Dong, H.; Ma, J.; Li, S.* Structures and Spectroscopic Properties of Large Molecules and Condensed-Phase Systems Predicted by Generalized Energy-Based Fragmentation Approach. Acc. Chem. Res. 2021, 54 (1), 169–181. https://doi.org/10.1021/acs.accounts.0c00580
Li, W.*; Ma, H.*; Li, S.; Ma, J.* Computational and Data Driven Molecular Material Design Assisted by Low Scaling Quantum Mechanics Calculations and Machine Learning. Chem. Sci. 2021, 12 (45), 14987–15006. https://doi.org/10.1039/D1SC02574K
Fu, F.; Liao, K.; Liu, Z.; Hong, D.; Yang, H.; Tian, Y.; Wei, W.; Liu, C.; Li, S.; Ma, J.*; Li, W.* Controlled Fluorescence Enhancement of DNA-Binding Dye Through Chain Length Match between Oligoguanine and TOTO. J. Phys. Chem. B 2021, 125 (2), 518–527. https://doi.org/10.1021/acs.jpcb.0c09611
Liao, K., Wang, S., Li, W.*, & Li, S.* Generalized energy-based fragmentation approach for calculations of solvation energies of large systems. Phys. Chem. Chem. Phys, 2021, 23(35), 19394-19401. https://doi.org/10.1039/D1CP02814F
Du, J.; Liao, K.; Hong, B.; Wang, Z.; Ma, J.; Li, W.*; Li, S.* Generalized Energy-Based Fragmentation Clustering Algorithm for Localized Excited States. Chem. J. Chinese Universities, 2021, 42(7), 2227-2237. <https://doi.org/10.7503/cjcu20210314>
Ni, Z.; Guo, Y.; Neese, F.; Li, W.; Li, S.* Cluster-in-Molecule Local Correlation Method with an Accurate Distant Pair Correction for Large Systems. J. Chem. Theory Comput. 2021, 17 (2), 756–766. https://doi.org/10.1021/acs.jctc.0c00831
Zhang, L.; Zhu, Q.; Gao, L.; Yang, L.; Li, W.; Li, S.; Zhu, J.*; Wang, W.*; Zeng, G.* Rational Design of the Nickel-Borane Complex for Efficient Hydrogenation of Styrene. J. Comput. Chem. 2021, 42 (8), 545–551. https://doi.org/https://doi.org/10.1002/jcc.26480
Li, S.; Sun, Y.; Wu, C.; Hu, W.; Li, W.; Liu, X.; Chen, M.; Zhu, Y.* Distinct Structure Assembly Driven by Metal–Ligand Binding in Au23 Nanoclusters and Its Relation to Photocatalysis. Chem. Commun. 2021, 57 (17), 2176–2179. https://doi.org/10.1039/D0CC08327E
Cheng, Z.; Zhao, D.; Ma, J.; Li, W.*; Li, S.* An On-the-Fly Approach to Construct Generalized Energy-Based Fragmentation Machine Learning Force Fields of Complex Systems. J. Phys. Chem. A 2020, 124 (24), 5007–5014. https://doi.org/10.1021/acs.jpca.0c04526