当前位置: X-MOL首页全球导师 国内导师 › 周东山

个人简介

2010-present Professor, Department of Polymer Science and Engineering, Nanjing University 2005-2010 Associate Professor, Department of Polymer Science and Engineering, Nanjing University 2003-2005 Postdoc, Department of Physics, Department of Chemistry, Nanjing University 2006-2008 Humboldt Research Fellow, Institute of Physics, Rostock University, Germany 2000-2003 PhD, Department of Polymer Science and Engineering, Nanjing University 1997-2000 MS, Department of Earth Science, Nanjing University 1993-1997 BS, Department of Chemical Engineering, Nanjing University 周东山,南京大学化学化工学院高分子科学与工程系、配位化学国家重点实验室教授、博士生导师,南京大学化学化工学院副院长,南京大学射阳高新技术研究院院长。1974年7月出生,2003年获南京大学高分子科学系博士学位。2005年开始受聘为化学化工学院副教授,2010年晋升为教授。期间,受德国洪堡基金会资助,于2006年8月至2008年6月在德国罗斯托克大学物理研究所从事合作研究。民盟南京大学委员会委员,南京市栖霞区人大代表,江苏省人大代表主要研究领域为高分子的结构转变及动力学行为,功能高分子复合材料。曾获得2005年度全国百篇优秀博士学位论文,入选教育部新世纪人才计划(2010年)。承担多项国家自然科学基金委、科技部以及教育部等国家部委研究项目,利用自行搭建的高速扫描高灵敏量热仪等仪器,对高分子在界面上上的玻璃化转变、结晶转变以及反应性等进行研究,成果在Macromolecules等国际高分子学科专业一流期刊上发表系列论文,并用于指导节能树脂的大规模生产。曾获得2014年度江苏省科技进步一等奖(第二完成人)及2015年度国家科技进步二等奖(第二完成人)。

研究领域

Instrumental Development in Fast Scanning and Sensitive Calorimetry Fast heating or cooling treatment is one of the most routinely used techniques to prepare advanced functional materials in metastable states. Depending on the rates of crystallization or polymorphism transition, the corresponding heating or cooling rates to capture the wanted metastable states can span from few K/s to 107 K/s. Calorimeters with ultrafast temperature scanning rates are highly desired to follow and control these fast structural evolutions. And additionally, the sensitivity of calorimeter, that is proportional to the temperature scanning rate, is also increased down to levels sub-nano J/K, making direct measurements on ultrathin film possible. In this lab, we successfully build the ultrafast scanning and sensitive calorimeter with scanning rates up to 105 K/s, short response time down to sub-milliseconds and sensitivity down to 50 pico J/K. in-situ Integration of Fast Scanning Calorimeter with Structural Analysis Techniques Thermally analysis alone in some cases is not enough to provide the full description of the phase and structural evolution, so we integrate the fast scanning calorimeter with the micro-structural analysis techniques, say, micro-Raman scattering spectroscopy. Melting behaviors with fast enough heating rate provides the growing crystallinity during annealing, while Raman spectroscopy provides the information regarding the chain conformation transition during crystallization. We can find that both techniques provide the consistent crystallization kinetics. Metastable States and Confined System With the fast scanning calorimeter, we can capture transient polymorphs of small molecules that are very unstable in ambient temperature even though they were obtained under demanding conditions. For example, the square plate form of liquid crystal forming molecule 8OCB, was found in very limited temperature and time window when it was grown from glassy liquid crystalline states [Soft Matter 2013, 9, 1488]. Glass transition of polymers confined into ultrathin film has been intensively studied owning to polymer thin films’ increasing important applications in high-tech devices, and as the model system for the study of size effect on the glass transition itself. With this sensitive calorimeter, we have successfully measured the glass transition of polymer thin films down to few nanometers [Macromolecules 2008, 41, 7662; 2013, 46, 7006].

近期论文

查看导师最新文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

1. Xu, J.; Wu, H. C.; Zhu, C. X.; Ehrlich, A.; Shaw, L.; Nikolka, M.; Wang, S. H.; Molina-Lopez, F.; Gu, X. D.; Luo, S.C.; Zhou, D. S.; Kim, Y. H.; Wang, G. J. N.; Gu, K.; Feig, V. R.; Chen, S. C.; Kim, Y.; Katsumata, T.; Zheng, Y. Q.; Yan, H.; Chung, J. W.; Lopez, J.; Murmann, B.; Bao, Z. N.* Multi-scale ordering in highly stretchable polymer semiconducting films. Nature Materials,2019, 18, 594. 2. Lu, H. Y.; Wan, Y. X.; Wang, T. Y.; Jin, R.; Ding, P. T.; Wang, R.; Wang, Y.; Teng, C.; Li, L. L.; Wang, X. L.; Zhou, D. S.*; Wang, X. L.* A high performance SnO2/C nanocomposite cathode for aluminum-ion batteries. J. Mater. Chem. A, 2019, 7, 7213. 3. Gasperini, A.; Wang, G. J. N.; Molina-Lopez, F.; Wu, H. C.; Lopez, J.; Xu, J.; Luo, S. C.; Zhou, D. S.; Xue, G.; Tok, J. B. H.; Bao, Z. N.* Characterization of Hydrogen Bonding Formation and Breaking in Semiconducting Polymers under Mechanical Strain. Macromolecules, 2019, 52, 2476. 4. Huang, Z. J.; Jiang, J.; Xue, G.; Zhou, D. S.* b-Phase Crystallization of Poly(vinylidene fluoride) in Poly(vinylidene fluoride)/Poly(ethyl methacrylate) Blends. Chin. J. Polym. Sci. 2019, 37, 94. 5. Qin, L. L.; Li, L. L.; Sha, Y.; Wang, Z. Y.; Zhou, D. S.; Chen, W.; Xue, G.* Conformational Transitions of Polymer Chains in Solutions Characterized by Fluorescence Resonance Energy Transfer. Polymers, 2018, 10, 1007. 6. Yang, R.; L, H. M.; Jiang, J.; Zhou, D. S.* Study on Isothermal Crystallization Kinetics of Poly(ethylene oxide) Droplets by Fast Scanning Calorimetry. ActaPolym. Sin. 2018, 9, 1228. 7. Huang, Z. J.; Jiang, J.; Shi, L. Y.; Wang, X. L.; Xue, G.; Li, L. L.*; Shen, Z. H.; Zhou, D. S.* Dependences of Confining Size and Interfacial Curvature on the Glass Transition of Polydimethylsiloxane in Self-Assembled Block Copolymers. Macromol. Chem. Phys. 2018,219, 1700518.

推荐链接
down
wechat
bug