个人简介
教育经历
2008.9-2015.1: 武汉大学计算机学院,计算机科学与技术,博士
2006.9-2008.6: 挪威阿基德大学,ICT,硕士
2002.9-2006.6:武汉大学计算机学院,计算机科学与技术,本科
工作经历
2015.1-2019.1:华中农业大学博士后
2009.1-2009.10:新加坡南洋理工大学CS,研究助理
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
1. Quan Yuan#, Luo Zhi-Hui#, Yang Qing-Yong#, Li Jiang, Zhu Qiang, Liu Ye-Mao, Lv Bo-Min, Cui Ze-Jia, Qin Xuan, Xu Ying, Zhu Li-Da*, Zhang Hong-Yu*. Systems chemical genetics-based drug discovery: prioritizing agents targeting multiple/reliable disease-associated genes as drug candidates.2019. Frontiers in Genetics.
2. Quan Yuan#, Liu Meng-Yuan #, Liu Ye-Mao, Zhu Li-Da, Wu Yu-Shan, Luo Zhi-Hui, et al. (2018). Facilitating anti-cancer combinatorial drug discovery by targeting epistatic disease genes. Molecules, 23(4), 736
3. Wang Hui#, Wang Gang, Zhu Li-Da, et al. Subnetwork identification and chemical modulation for neural regeneration: A study combining network guided forest and heat diffusion model[J]. Quantitative Biology, 2018, 6(4).
4. Yuan Jun#, Zhu Li-Da*, Zhu Fu-xi. Predicting potential Drug-Target Interactions with Multi-label learning and ensemble learning. International Conference on Intelligent Computing (ICIC2019), Accepted
5. Zhu Li-Da#, He Chang-Shou, Liu Ye-Mao, et al. A systems chemical biology approach to identify targets of antibacterial agents: A case study of Chelerythrine and Rhein, IEEE International Conference on Bioinformatics and Biomedicine. IEEE, 2015:1047-1056.
6. Zhu Li-Da#, Zhu Fuxi*. Identification association of drug-disease by using functional gene module for breast cancer[J]. Bmc Medical Genomics, 2015, 8(S2):1-8.
7. Zhu Li-Da#, Liu Juan*. Integration of a prognostic gene module with a drug sensitivity module to identify drugs that could be repurposed for breast cancer therapy. [J]. Computers in Biology & Medicine, 2015, 61(C):163.
8. Zhu Li-Da#, Liu Juan*, Liang Feng-Ji, et al. Predicting response to preoperative chemotherapy agents by identifying drug action on modeled microRNA regulation networks[J]. Plos One, 2014, 9(5):e98140.
9. Wang Wei, Liu J*, Xiong Yi,Zhu Li-Da, et al. Analysis and classification of DNA-binding sites in single-stranded and double-stranded DNA-binding proteins using protein information[J]. IET Systems Biology, 2014, 8(4):176.
10. Zhu Li-Da#, Li Juan*. Water Bioinformatics: An Association between Estrogen Degradation and 16S rRNA Motifs, International Conference on Bioinformatics and