个人简介
2011
Hellman Faculty Fellow
2011
DOE Early Career Award
2007
LANL Director's Postdoctoral Fellowship
2001
The Israel Chemical Society, J. Jortner prize
研究领域
Physical/Analytical Chemistry
1. Nonequilibrium Atomic Limit. Theoretical tools employed in ab initio simulations in the field of molecular electronics combine methods of quantum chemistry and mesoscopic physics. Traditionally these methods are formulated in the language of effective single-particle orbitals. We argue that in many cases of practical importance a formulation in the language of many-body states, the nonequilibirum atomic limit, is preferable. We work with generalized quantum master equation (QME), Hubbard and pseudoparticle nonequilibrium Green functions (NEGF) formulations as many-body states based alternatives to the standard Redfield QME and NEGF methodologies.
2. Molecular Optoelectronics. The interaction of light with molecular conduction junctions is attracting growing interest as a challenging experimental and theoretical problem on one hand, and because of its potential application as a characterization and control tool on the other. In particular, Raman spectroscopy (following inelastic electron tunneling spectroscopy) has the potential to become an important diagnostic tool very much needed in the field of molecular electronics. Raman scattering was utilized to judge the presence and extent of the heating of molecular vibrations. These experiments are motivation for our theoretical formulation of transport and Raman scattering in molecular junctions. We develop both model and ab initio formulations accounting for both optical scattering and electron transport on the same footing.
3. Molecular Nanoplasmonics. Research in plasmonics is expanding its domains into several subfields. The unique optical properties of the surface plasmon-polariton (SPP) resonance, being the very foundation of plasmonics, find intriguing applications in optics of nanomaterials, materials with effective negative index of refraction, direct visualization, photovoltaics, single-molecule manipulation, and biotechnology. We work on modeling molecule-plasmon interactions, an essential ingredient in any realistic ab initio simulation for optical response of molecular junctions or optically driven open nanoscale devices.
4. Molecular Spintronics. The possibility of constructing spin devices utilizing organic molecules was demonstrated in a number of experiments, indicating the emergence of molecular spintronics as a new branch of molecular electronics. Magnetic field and electric potential were considered in the literature as controls for spin flux. We study theoretically molecular devices where spin rather than charge flux is the measured signal. Of particular interest are spin fluxes manipulated by an external electric field.
5. Quantum Thermodynamics and Full Counting Statistics. Thermodynamics of systems at nanoscale is at the heart of understanding and controlling the processes in the world of small systems from cells in biology to memory chips and optoelectric nano-devices in molecular electronics. Small size and open character of such devices implies importance of quantum and stochastic effects. Stochastic character of processes in open systems requires probabilistic description, which is intimately related to the full counting statistics (FCS). These issues have direct implications on defining meaningful notions of efficiency in thermoelectricity or photoelectricity.
6. Quantum Interference and Coherent Control in Junctions. The small size of molecules naturally poses questions on the role of coherences in the response properties of molecular devices. In molecular junctions experimental observations were attributed to interference effects in intramolecular electron transfer and elastic transport through single molecules, or to vibrationally induced decoherence. We model effects of quantum interference on charge and energy transport in molecular junctions, which either can be detected in the measurable transport characteristics or allow to control the molecular device.
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
A. J. White, M. A. Ochoa, and M. Galperin "Nonequilibrium Atomic Limit for Transport and Optical Response of Molecular Junctions", J. Phys. Chem. C, 2014, Vol. 118, Issue 21, 11159-11173
Ochoa MA, Galperin M, Ratner MA, "A non-equilibrium equation-of-motion approach to quantum transport utilizing projection operators.", J Phys Condens Matter, 2014, Vol. 26, Issue 45, 455301 [View Abstract]
White AJ, Tretiak S, Galperin M, "Raman scattering in molecular junctions: a pseudoparticle formulation.", Nano Lett, 2014, Vol. 14, Issue 2, 699-703 [View Abstract]
A. Baratz, M. Galperin, and R. Baer "Gate-Induced Intramolecular Charge Transfer in a Tunnel Junction: A Nonequilibrium Analysis", J. Phys. Chem. C, 2013, Vol. 117, 10257-10263
A. J. White, U. Peskin, and M. Galperin "Coherence in charge and energy transfer in molecular junctions", Phys. Rev. B, 2013, Vol. 88, 205424 [View Abstract]
D. Rai and M. Galperin "Electrically Driven Spin Currents in DNA", J. Phys. Chem. C, 2013, Vol. 117, 13730-13737
Jahn BO, Ottosson H, Galperin M, Fransson J, "Organic single molecular structures for light induced spin-pump devices.", ACS Nano, 2013, Vol. 7, Issue 2, 1064-71 [View Abstract]
M. Banik, V. A. Apkarian, T.-H. Park, and M. Galperin "Raman Staircase in Charge Transfer SERS at the Junction of Fusing Nanospheres", J. Phys. Chem. Lett., 2013, Vol. 4, 88-92
A. J. White and M. Galperin. "Inelastic transport: a pseudoparticle approach" Phys. Chem. Chem. Phys. The Royal Society of Chemistry, 14, 13809-13819 (2012)
A. J. White, B. D. Fainberg, and M. Galperin, "Collective Plasmon-Molecule Excitations in Nanojunctions: Quantum Consideration" J. Phys. Chem. Lett. 3, 2738-2743 (2012)
M. Galperin and A. Nitzan. "Molecular optoelectronics: The interaction of molecular conduction junctions with light" Phys. Chem. Chem. Phys. 14, 9421-9438 (2012)
T.-H. Park and M. Galperin. "Charge transfer contribution to surface-enhanced Raman scattering in a molecular junction: Time-dependent correlations" Phys. Rev. B 84, 075447 (2011)
T.-H. Park and M. Galperin. "Self-consistent full counting statistics of inelastic transport" Phys. Rev. B 84, 205450 (2011)
M. Esposito and M. Galperin. "Self-Consistent Quantum Master Equation Approach to Molecular Transport."J. Phys. Chem. C 114, 20362 (2010)
M. Sukharev and M. Galperin. "Transport and optical response of molecular junctions driven by surface plasmon polaritons"Phys. Rev. B 81, 165307 (2010)
Esposito M. and Galperin M. "Transport in molecular states language: Generalized quantum master equation approach", Phys. Rev. B 79, 205303 (2009)