个人简介
教育背景
1993-1997 吉林大学化学系毕业,理学学士
2000.9-2005.7 美国纽约市立大学分析化学专业毕业,理学博士
工作经历
2005-2007年 美国缅因州立大学任职于副研究员。
2008-至今 作为学术骨干被吉林大学引进回国 教授,博士生导师
研究领域
锂离子电池:构建锂电衰减模型,预测不同工况下电池寿命;探究锂离子电池衰老机理,研究锂离子电池热失控及产气条件
钠离子电池:钠离子电池生物质基硬碳负极前驱体的构筑及碳化研究;探究钠离子电池内部机理与性能优化
电催化:基于金属有机多孔材料的电解水催化剂研究;非贵金属催化剂的开发与性能的提升;
超级电容器:过渡金属氧化正极材料研究;非对称电容负极沉积现象探究及抑制
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
Facile fabricate of F-doped lead dioxide electrode coating onto porous 3D titanium plate for advanced lead-carbon hybrid capacitor. 10.1016/j.matlet.2020.128553; Materials Letters 280 (2020) 128553.
Facile Self-templating Melting Route Preparation of Biomass-derived Hierarchical Porous Carbon for Advanced Supercapacitors. 10.1007/s40242-018-8127-9; Chem. Res. Chin. Univ., 2018, 34(6), 983―988.
Electrodeposited behavior of lead on the negative electrode in the neutral lead-carbon hybrid capacitor: Influence and inhibition. 10.1016/j.ijhydene.2021.05.192; International journal of hydrogen energy 46 (2021) 27119e27127.
Modification of a rice husk-based activated carbon by thermal treatment and its effect on its electrochemical performance as a supercapacitor electrode. 10.1016/s1872-5805(19)60018-1; NEW CARBON MATERIALS 1007-8827( 2019) 04-0341-08.
Facile fabrication and electrochemical oxidation of activated carbon microtube bundles for advanced all-solid-state supercapacitors. 10.1088/1361-6528/ab7f8d; Nanotechnology 31 (2020) 395402 (7pp).
Hierarchical Porous Carbon Prepared through Sustainable CuCl2 Activation of Rice Husk for High-Performance Supercapacitors. 10.1002/slct.201804002; ChemistrySelect2019,4,2314–2319.
Modification of a rice husk-based activated carbon by thermal treatment and its effect on its electrochemical performance as a supercapacitor electrode. 10.1016/s1872-5805(19)30021-6; New Carbon Materials, 2019, 34(4): 341-348 .
Mechanisms and Electrochemical Properties of Different Stabilizers in Stannous Methanesulfonate Solution. 10.7503/cjcu20180072; CHEMICAL JOURNAL OF CHINESE UNIVERSITIES 2018, 8, 1768~1774.
Facile fabrication of porous carbon microtube with surrounding carbon skeleton for long-life electrochemical capacitive energy storage. 10.1016/j.energy.2018.04.151; Energy 155 (2018) 899e908.
Micron-sized CuO spheres anchored on three-dimensional nickel foams for high-performance aqueous asymmetric capacitor. 10.1016/j.jallcom.2024.173579; Journal of Alloys and Compounds 980, 2024, 173579.
A green technology for the preparation of high capacitance rice husk-based activated carbon. 10.1016/j.jclepro.2015.07.005; Journal of Cleaner Production, 112, 2016, 1190-1198.
Post-synthetic modification of MIL-53(Fe) with Tb3+ and guanosine monophosphate: Construction of a fluorescent dual-target sensor. 10.1016/j.microc.2024.109946; Microchemical Journal 199 (2024) 109946.
An electrochemical modification strategy to fabricate NiFeCuPt polymetallic carbon matrices on nickel foam as stable electrocatalysts for water splitting. 10.1039/D2SC02845J; Chem. Sci., 2022, 13,8876–8884.
Three-dimensional Co3O4/CoS hierarchical nanoneedle arrays electrode grown on nickel foam for high-performance asymmetric capacitors. 10.1016/j.est.2022.104483; Journal of Energy Storage 51 (2022) 104483.
3D Hierarchical Porous Carbon for Supercapacitors Prepared from Lignin through a Facile Template-Free Method. 10.1002/cssc.201403486; ChemSusChem 2015, 8,2114–2122.
On the electrochemical origin of the enhanced charge acceptance of the lead-carbon electrode. 10.1039/c4ta05891g; J. Mater. Chem. A, 2015,3, 4399-4404.
Facile electrochemical oxidation of activated carbon at low voltage for supercapacitors. 10.1016/j.matlet.2021.129976; Materials Letters 298 (2021) 129976.
Metal–Organic Framework-Derived Hollow Nanocubes as Stable Noble Metal-Free Electrocatalyst for Water Splitting at High Current Density. 10.31635/ccschem.023.202303256; CCS Chemistry. 2024, 6, 1324–1337.
Unveiling the influential factors and inhibition strategies of the electrodeposition behavior on the negative electrode in aqueous nickle‑carbon supercapacitors. 10.1016/j.est.2023.110297; Journal of Energy Storage 81 (2024) 110297.
A facile synthesis of flower-like NiCo-LDH for high specific capacitance pseudosupercapacitor positive materials. 10.1007/s10853-024-09430-w. Journal of Materials Science 59, 4225–4235, (2024);
One-step potential-cycling method to fabricate NiO nanospheres for high performance supercapacitor application. 10.1016/j.est.2024.111134. JournalofEnergyStorage86(2024)111134.
Co3O4 nanowire modified with carbon nanotubes to be used as improved asymmetric supercapacitor electrode. 10.1016/j.surfin.2024.104049; SurfacesandInterfaces46(2024)104049.
Electrochemical synthesis of trimetallic nickel-iron-copper nanoparticles via potential-cycling for high current density anion exchange membrane water-splitting applications. 10.1016/j.jechem.2023.10.033. Journal of Energy Chemistry 89 (2024) 535–542.
Unraveling the detrimental crosstalk between cathode and anode in the aqueous asymmetric capacitor of activated carbon /copper oxide. 10.1016/j.est.2023.109817; Journal of Energy Storage 76 (2024) 109817.
Single-atom platinum with asymmetric coordination environment on fully conjugated covalent organic framework for efficient electrocatalysis. 10.1038/s41467-024-46872-x; Nature Communications| (2024) 15:2556.
Refinement of structural characteristics and supercapacitor performance of MnO2 nanosheets via CTAB-assisted electrodeposition. 10.1016/j.pnsc.2023.12.013. Progress in Natural Science: Materials International 33 (2023) 881–890.
CoSe2@ carbon composite with open, superlarge voids for improved supercapacitor performance. 10.1016/j.diamond.2024.110808. Diamond&RelatedMaterials142(2024)110808.
High-performance supercapacitor materials based on NiMn-LDH layered structures with MXene layers. 10.1016/j.jallcom.2024.176785; Journal of Alloys and Compounds, 1008, 2024, 176785
Hydrothermal-Deposition Synthesis of MnO2/MnS Nanorods as High-Performance Asymmetric Supercapacitor Positive Electrode Materials. 10.1016/j.pnsc.2024.07.023; Progress in Natural Science: Materials International Available online 10 August 2024
Hierarchical Co–Ni layered double hydroxide nanosheets enwrapped CuO Nanorods by electrodeposition for excellent energy storage devices. JournalofEnergyStorage98(2024)112996.
Ionic covalent organic framework-MXene heterojunction constructed by electrostatic interaction for stable electrocatalytic hydrogen generation. 10.1016/j.cej.2024.156033. Chemical Engineering Journal 499 (2024) 156033.
Structural Modulation of Covalent Organic Frameworks for Efficient Hydrogen Peroxide Electrocatalysis. 10.1002/anie.202410417; Angew. Chem. Int. Ed. 2024, 63, e202410417.