当前位置: X-MOL首页全球导师 海外导师 › Tang, Weiping

个人简介

Background: Dr. Weiping Tang joined the faculty of UW-Madison in 2007. His lab focuses on various aspects of drug discovery including synthetic organic chemistry, medicinal chemistry, chemical biology, assay development, and mechanism of action studies for bioactive compounds. Please visit his lab website (link on the left) for updated information. Education: BS 1997 Chemistry - Peking University MS 1999 Chemistry - New York University PhD 2005 Organic Chemistry - Stanford University Postdoc 2007 Medicinal Chemistry, Chemical Biology and Drug Discovery - Harvard University Awards and Honors: Boehringer Ingelheim Predoctoral Fellowship (2002) Amgen Predoctoral Fellowship (2003) HHMI Postdoctoral Fellowship (2005-2007) Thieme Synlett/Synthesis Journal Award (2010) ACS Young Academic Investigator Symposium (2011) Amgen Young Investigator Award (2011) UW-Madison Vilas Mid-Career Award (2018) Janis Apinis Professor (2019)

研究领域

Drug Discovery a) We are developing small molecules that can selectively remove disease-causing proteins in cells and animal models. These small molecules can be used as probes to knock out proteins and therapeutics to treat human diseases. b) We are also developing small molecule ligands for carbohydrate binding proteins that are secreted from the cells or on the outer membrane. These proteins are essential for cell-cell communications and many diseases, such as cancers and vascular diseases. c) We develop various cell-based and biochemical assays to evaluate the pharmacological properties of the above small molecules such as potency, selectivity, and stability. We also design assays to study the detailed cellular mechanisms of these novel small molecules such as how they induce the ubiquitination, degradation and other cellular changes. Organic Synthesis We are interesting in advancing glycoscience by streamlining the synthesis of carbohydrates through the development of novel technologies (e.g. site-selective functionalization, de novo synthesis of bacterial sugars, automated synthesis, electrochemical synthesis, etc.). We are also interested in developing novel reactions for the synthesis of carbo- and heterocycles that are present in diverse bioactive polycyclic natural products and pharmaceutical agents. These reactions can be used for the optimization of pharmacological properties of small molecules such as potency, selectivity, stability, and solubility for treating various human diseases. Chemical Biology We are interested in dissecting the complex biological pathways by novel small molecule probes. We are currently developing small molecules that can selectively modulate protein stability and epigenetic markers.

近期论文

查看导师最新文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

“A General Strategy for the Synthesis of Rare Sugars via Ru(II)-catalyzed and Boron-mediated Selective Epimerization of 1,2-trans-diols to 1,2-cis-diols” Li, X.; Wu, J.; and Tang, W.* J. Am. Chem. Soc. 2022, in press. “Streamlined Iterative Assembly of Thio-oligosaccharides by Aqueous S-Glycosylation of Diverse Deoxythio Sugars” Peng, W.; Jia, P.; Fan, Q.; McCarty, B. J. and Tang, W.* ChemSusChem. 2021, in press, “In Silico Modeling and Scoring of PROTAC-Mediated Ternary Complex Poses” Liao, J.; Nie, X.; Unarta, I. C.; Ericksen, S. S.*; and Tang, W.* ChemRxiv. 2021, DOI: 10.26434/chemrxiv-2021-ldzzz-v3. “Energy Decomposition Analysis Reveals the Nature of Lone Pair−π Interactions with Cationic π Systems in Catalytic Acyl Transfer Reactions” Hao, H.; Qi, X.; Tang, W.* and Liu, P.* Org. Lett. 2021, 23, 4411–4414. “Development of Triantennary N-Acetylgalactosamine Conjugates as Degraders for Extracellular Proteins” Zhou, Y.; Teng, P.; Montgomery, N. T.; Li, X.; and Tang, W.* ACS Cent. Sci, 2021, 7, 499-506. “Evaluation of the binding affinity of E3 ubiquitin ligase ligands by cellular target engagement and in-cell ELISA assay” Yang, K.; Zhou, Y.; Roberts, R. L.; Nie, X.; Tang, W.* Star Protocols 2021, 2, 100288. “A neuroanatomical mechanism linking perinatal TCDD exposure to lower urinary tract dysfunction in adulthood” Turco, A. E.; Oakes, S. R.; Stietz, K. P. K. Dunham, C. L.; Joseph, D. B.; Chathurvedula, T. S.; Girardi, N. M.; Schneider, A. J.; Gawdzik, J.; Sheftel, C. M.; Wang, P.; Wang, Z.; Bjorling, D. E.; Ricke, W. A.; Tang, W.; Hernandez, L. L.; Keast, J. R.; Bonev, A. D.; Grimes, M. D.; Strand, D. W.; Tykocki, N. R.; Tanguay, R. L.; Peterson, R. E.; Vezina, C. M. Dis. Models Mech. 2021, 14, dmm049068. “Development of MDM2 Degraders Based on Ligands Derived from Ugi Reactions:Lessons and Discoveries” Wang, B.; Liu, J.; Tandon, I.; Wu, S.; Teng, P.; Liao, J.; and Tang, W.* Eur. J. Med. Chem. 2021, 219, 113425. “A dancing nickel in asymmetric catalysis: Enantioselective synthesis of boronic esters by 1,1-addition to terminal alkenes” McCarty, B. J. and Tang, W.* Green Syn. Cat. 2021, 2, 1-3. “Transition Metal-Catalyzed Selective Carbon−Carbon Bond Cleavage of Vinylcyclopropanes in Cycloaddition Reactions” Wang, J.; Blaszczyk, S. A.; Li, X.;* and Tang, W.* Chem. Rev. 2021, 121, 110-139. “A marine microbiome antifungal targets urgent-threat drug-resistant fungi” Zhang, F.; Zhao, M.; Braun, D. R.; Ericksen, S. S.; Piotrowski, J. S.; Nelson, J.; Peng, J.; Ananiev, G. E. Chanana, S.; Barns, K.; Fossen, J.; Sanchez, H.; Chevrette, M. G.; Guzei, I. A.; Zhao, C.; Guo, L.; Tang, W.; Currie, C. R.; Rajski, S. R.; Audhya, A.; Andes, D. R.; Bugni, T. S. Science, 2020, 370 (issue 6519), 974-978. “From Methylene Bridged Diindole to Carbonyl Linked Benzimidazoleindole: Development of Potent and Metabolically Stable PCSK9 Modulators” Xie, H.;‡ Yang, K.;‡ Winston-McPherson, G. N.; Stapleton, D. S.; Keller, M. P.; Attie, A. D.; Smith, K. A.; and Tang, W.* Eur. J. Med. Chem. 2020, 206, 112678-112692. (‡Equal Contribution) “Mild Cu(OTf)2-mediated C-glycosylation with Chelation-Assisted Picolinate as a Leaving Group” Ye, W.;‡ Stevens, C. M.;‡ Wen, P.;‡ Simmons, C. J.; and Tang, W.* J. Org. Chem. 2020, 85, 16218–16225. (‡Equal Contribution) (Special Issue on A New Era of Discovery in Carbohydrate Chemistry) “A Cell-based Target Engagement Assay for the Identification of Cereblon E3 Ubiquitin Ligase Ligands and Their Application in HDAC6 Degraders” Yang, K.;‡ Zhao, Y.;‡ Nie, X.; Wu, H.; Wang, B.; Almodovar-Rivera, C. M.; Xie, H.;* Tang, W.* Cell Chem. Biol. 2020, 27, 866-876. (‡Equal Contribution) “Two-stage Strategy for Development of Proteolysis Targeting Chimeras and its Application for Estrogen Receptor Degraders” Roberts, B. L.;‡ Ma, Z.-X.;‡ Gao, A.; Leisten, E. D.; Yin, D.; Xu, W.; and Tang, W.* ACS Chem. Biol. 2020, 15, 1487–1496. (‡Equal Contribution) “Chemical Synthesis and Biological Application of Modified Oligonucleotides” Glazier, D. A.;‡ Liao, J.;‡ Roberts, B. L.;‡ Li, X.; Yang, K.; Stevens, C. M.; and Tang, W.* Bioconjugate Chem. 2020, 31, 1213-1233. (‡Equal Contribution) “Development of Selective Histone Deacetylase 6 (HDAC6) Degraders Recruiting Von Hippel–Lindau (VHL) E3 Ubiquitin Ligase” Yang, K.;‡ Wu, H.;‡ Zhang, Z.; Leisten, E. G.; Nie, X.; Liu, B.; Wen, Z.; Zhang, J.; Cunningham, M. D. and Tang, W.* ACS Med. Chem. Lett. 2020, 11, 575-581. (‡Equal Contribution) “Synthesis of Glycosyl Chlorides and Bromides by Chelation Assisted Activation of Picolinic Esters under Mild Neutral Conditions” Wen, P.;‡ Simmons, C. J.;‡ Ma, Z.-X.; Blaszczyk, S. A.; Balzer, P. G.; Ye, W.; Duan, X.; Wang, H.-Y.; Yin, D.; Stevens, C. M.; and Tang, W.* Org. Lett. 2020, 22, 1495-1498. (‡Equal Contribution) “Synthesis and Biological Evaluation of FICZ Analogues as Agonists of Aryl Hydrocarbon Receptor” Wu, H.;‡ Liu, B.;‡ Yang, K.;‡ Winston-McPherson, G. N.; Leisten, E. D.; Vezina, C. M.; Ricke, W. A.; Peterson, R. E.; and Tang, W.* Bioorg. Med. Chem. Lett. 2020, 30, 126959. (‡Equal Contribution) “Rhodium-Catalyzed (5 + 2) and (5 + 1) Cycloadditions Using 1,4-Enynes as Five-Carbon Building Blocks” Blaszczyk, S. A.; Glazier, D. A.; and Tang, W.* Acc. Chem. Res. 2020, 53, 231-243.

推荐链接
down
wechat
bug