当前位置:
X-MOL 学术
›
Nano Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Photospintronics: Magnetic Field-Controlled Photoemission and Light-Controlled Spin Transport in Hybrid Chiral Oligopeptide-Nanoparticle Structures
Nano Letters ( IF 9.6 ) Pub Date : 2016-04-01 00:00:00 , DOI: 10.1021/acs.nanolett.6b00582 Prakash Chandra Mondal 1 , Partha Roy 1 , Dokyun Kim 2 , Eric E. Fullerton 2 , Hagai Cohen 3 , Ron Naaman 1
Nano Letters ( IF 9.6 ) Pub Date : 2016-04-01 00:00:00 , DOI: 10.1021/acs.nanolett.6b00582 Prakash Chandra Mondal 1 , Partha Roy 1 , Dokyun Kim 2 , Eric E. Fullerton 2 , Hagai Cohen 3 , Ron Naaman 1
Affiliation
The combination of photonics and spintronics opens new ways to transfer and process information. It is shown here that in systems in which organic molecules and semiconductor nanoparticles are combined, matching these technologies results in interesting new phenomena. We report on light induced and spin-dependent charge transfer process through helical oligopeptide–CdSe nanoparticles’ (NPs) architectures deposited on ferromagnetic substrates with small coercive force (∼100–200 Oe). The spin control is achieved by the application of the chirality-induced spin-dependent electron transfer effect and is probed by two different methods: spin-controlled electrochemichemistry and photoluminescence (PL) at room temperature. The injected spin could be controlled by excitation of the nanoparticles. By switching the direction of the magnetic field of the substrate, the PL intensity could be alternated.
中文翻译:
Photopintronics:混合手性寡肽-纳米颗粒结构中的磁场控制的光发射和光控制的自旋运输。
光子学和自旋电子学的结合开辟了传输和处理信息的新方式。在此表明,在有机分子和半导体纳米粒子结合在一起的系统中,匹配这些技术会产生有趣的新现象。我们通过沉积在具有较小矫顽力(约100-200 Oe)的铁磁基质上的螺旋寡肽-CdSe纳米颗粒(NPs)结构,报道了光诱导和自旋相关的电荷转移过程。通过应用手性诱导的自旋依赖性电子转移效应来实现自旋控制,并通过两种不同的方法进行探索:自旋控制电化学和室温下的光致发光(PL)。注入的自旋可通过纳米颗粒的激发来控制。
更新日期:2016-04-01
中文翻译:
Photopintronics:混合手性寡肽-纳米颗粒结构中的磁场控制的光发射和光控制的自旋运输。
光子学和自旋电子学的结合开辟了传输和处理信息的新方式。在此表明,在有机分子和半导体纳米粒子结合在一起的系统中,匹配这些技术会产生有趣的新现象。我们通过沉积在具有较小矫顽力(约100-200 Oe)的铁磁基质上的螺旋寡肽-CdSe纳米颗粒(NPs)结构,报道了光诱导和自旋相关的电荷转移过程。通过应用手性诱导的自旋依赖性电子转移效应来实现自旋控制,并通过两种不同的方法进行探索:自旋控制电化学和室温下的光致发光(PL)。注入的自旋可通过纳米颗粒的激发来控制。