当前位置:
X-MOL 学术
›
ChemElectroChem
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Protamine Promotes Direct Electron Transfer Between Shewanella oneidensis Cells and Carbon Nanomaterials in Bacterial Biocomposites
ChemElectroChem ( IF 3.5 ) Pub Date : 2019-03-12 , DOI: 10.1002/celc.201801751 Stéphane Pinck 1 , Frédéric P. A. Jorand 1 , Mengjie Xu 1 , Mathieu Etienne 1
ChemElectroChem ( IF 3.5 ) Pub Date : 2019-03-12 , DOI: 10.1002/celc.201801751 Stéphane Pinck 1 , Frédéric P. A. Jorand 1 , Mengjie Xu 1 , Mathieu Etienne 1
Affiliation
In this work, we studied the direct electron transfer reactions occurring in a biocomposite resulting from the self‐assembly of Shewanella oneidensis MR‐1 cells with different carbon nanomaterials (multi‐walled carbon nanotubes, graphene oxide, Ketjen black or ordered mesoporous carbon) and protamine. The system has been studied with dynamic light scattering, scanning electron microscopy, epifluorescence microscopy and electrochemistry. Although protamine is known to have an antimicrobial activity, the interaction with carbon nanomaterials largely limits this effect. Formate and lactate oxidation and fumarate reduction have been studied. In the presence of 50 mM formate or 50 mM fumarate, the anodic current was lower than the cathodic one with the biocomposite prepared with protamine, while it was found similar with the biocomposite prepared with cytochromes c1 or c3DvH, suggesting different electron transfer pathways. The redox potential observed for fumarate reduction (half‐wave potential) was found between −0.1 V and −0.2 V vs. SHE with an onset potential close to 0 V vs. SHE with MWCNT, i. e. very close to 0.030 V vs. SHE, the formal redox potential for fumarate/succinate interconversion. A maximum current density in the range of 1 A m−2 was reached for fumarate reduction. These data highlight a new way to promote direct electron transfer reactions in electroactive artificial biofilms.
中文翻译:
鱼精蛋白促进细菌生物复合材料中沙瓦氏假单胞菌细胞和碳纳米材料之间的直接电子转移。
在这项工作中,我们研究了由Shewanella oneidensis的自组装引起的生物复合物中发生的直接电子转移反应。具有不同碳纳米材料(多壁碳纳米管,氧化石墨烯,科琴黑或有序中孔碳)和鱼精蛋白的MR-1细胞。该系统已通过动态光散射,扫描电子显微镜,落射荧光显微镜和电化学进行了研究。尽管已知鱼精蛋白具有抗菌活性,但与碳纳米材料的相互作用在很大程度上限制了这种作用。已经研究了甲酸酯和乳酸的氧化以及富马酸酯的还原。在存在50 mM甲酸或50 mM富马酸酯的情况下,阳极电流低于用鱼精蛋白制备的生物复合物的阴极电流,而发现与用细胞色素c 1或c 3制备的生物复合物相似。DvH,表明不同的电子转移途径。相对于SHE,观察到的富马酸盐还原的氧化还原电势(半波电势)在-0.1 V和-0.2 V之间,而对于MWCNT,起始电势与SHE接近0V。e。与SHE相比非常接近0.030 V,这是富马酸酯/琥珀酸酯互转换的形式氧化还原电势。为了降低富马酸酯,达到了1 A m -2的最大电流密度。这些数据突出了促进电活性人工生物膜中直接电子转移反应的新方法。
更新日期:2019-03-12
中文翻译:
鱼精蛋白促进细菌生物复合材料中沙瓦氏假单胞菌细胞和碳纳米材料之间的直接电子转移。
在这项工作中,我们研究了由Shewanella oneidensis的自组装引起的生物复合物中发生的直接电子转移反应。具有不同碳纳米材料(多壁碳纳米管,氧化石墨烯,科琴黑或有序中孔碳)和鱼精蛋白的MR-1细胞。该系统已通过动态光散射,扫描电子显微镜,落射荧光显微镜和电化学进行了研究。尽管已知鱼精蛋白具有抗菌活性,但与碳纳米材料的相互作用在很大程度上限制了这种作用。已经研究了甲酸酯和乳酸的氧化以及富马酸酯的还原。在存在50 mM甲酸或50 mM富马酸酯的情况下,阳极电流低于用鱼精蛋白制备的生物复合物的阴极电流,而发现与用细胞色素c 1或c 3制备的生物复合物相似。DvH,表明不同的电子转移途径。相对于SHE,观察到的富马酸盐还原的氧化还原电势(半波电势)在-0.1 V和-0.2 V之间,而对于MWCNT,起始电势与SHE接近0V。e。与SHE相比非常接近0.030 V,这是富马酸酯/琥珀酸酯互转换的形式氧化还原电势。为了降低富马酸酯,达到了1 A m -2的最大电流密度。这些数据突出了促进电活性人工生物膜中直接电子转移反应的新方法。