当前位置: X-MOL 学术Nat. Med. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A guide to deep learning in healthcare.
Nature Medicine ( IF 58.7 ) Pub Date : 2019-Jan-01 , DOI: 10.1038/s41591-018-0316-z
Andre Esteva 1 , Alexandre Robicquet 1 , Bharath Ramsundar 1 , Volodymyr Kuleshov 1 , Mark DePristo 2 , Katherine Chou 2 , Claire Cui 2 , Greg Corrado 2 , Sebastian Thrun 1 , Jeff Dean 2
Affiliation  

Here we present deep-learning techniques for healthcare, centering our discussion on deep learning in computer vision, natural language processing, reinforcement learning, and generalized methods. We describe how these computational techniques can impact a few key areas of medicine and explore how to build end-to-end systems. Our discussion of computer vision focuses largely on medical imaging, and we describe the application of natural language processing to domains such as electronic health record data. Similarly, reinforcement learning is discussed in the context of robotic-assisted surgery, and generalized deep-learning methods for genomics are reviewed.

中文翻译:

医疗保健深度学习指南。

在这里,我们将介绍用于医疗保健的深度学习技术,重点讨论计算机视觉、自然语言处理、强化学习和通用方法中的深度学习。我们描述了这些计算技术如何影响医学的几个关键领域,并探索如何构建端到端系统。我们对计算机视觉的讨论主要集中在医学成像上,我们描述了自然语言处理在电子健康记录数据等领域的应用。同样,在机器人辅助手术的背景下讨论了强化学习,并回顾了基因组学的通用深度学习方法。
更新日期:2019-01-27
down
wechat
bug