当前位置:
X-MOL 学术
›
Adv. Funct. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Silver‐Infused Porphyrinic Metal–Organic Framework: Surface‐Adaptive, On‐Demand Nanoplatform for Synergistic Bacteria Killing and Wound Disinfection
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2019-01-25 , DOI: 10.1002/adfm.201808594 Yan Zhang 1, 2 , Panpan Sun 1, 2 , Lu Zhang 1, 2 , Zhenzhen Wang 1, 2 , Faming Wang 1, 2 , Kai Dong 1 , Zhen Liu 1 , Jinsong Ren 1 , Xiaogang Qu 1
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2019-01-25 , DOI: 10.1002/adfm.201808594 Yan Zhang 1, 2 , Panpan Sun 1, 2 , Lu Zhang 1, 2 , Zhenzhen Wang 1, 2 , Faming Wang 1, 2 , Kai Dong 1 , Zhen Liu 1 , Jinsong Ren 1 , Xiaogang Qu 1
Affiliation
The fabrication of functional nanoplatforms for combating multidrug‐resistant bacteria is of vital importance. Among them, silver nanoparticles (Ag NPs) have shown an antibacterial effect; however, the remainder cores of Ag NPs after use might have a toxic effect on humans. Thus, Ag ions based materials have been fabricated to substitute Ag NPs for antibacterial applications. Nevertheless, the always‐on release state leads to the low biocompatibility, which limits their biomedical applications. In addition, the single effect also restricts their antibacterial ability. Herein, a powerful surface‐adaptive, on‐demand antimicrobial nanoplatform is fabricated by coating hyaluronic acid (HA) on Ag ions loaded photosensitive metal‐organic frameworks to exhibit a strong synergistic effect. The nanoplatform shows good biocompatibility with nontargeted cells, as negatively charged HA can prevent the release of Ag ions. While in the presence of targeted bacteria, the secreted hyaluronidase can degrade HA on the nanoplatform and produce positively charged nanoparticles, which display increased affinity to bacteria and show a strong synergistic antibacterial effect owing to the released Ag ions and generated reactive oxygen species under visible light irradiation. Importantly, due to the outstanding on‐demand antimicrobial performance, the nanoplatform also shows great effects on treating multidrug‐resistant bacteria infected wounds in mice models.
中文翻译:
含银的卟啉金属有机框架:用于协同细菌杀灭和伤口消毒的表面适应性,按需纳米平台。
对抗多药耐药细菌的功能性纳米平台的制造至关重要。其中,银纳米颗粒(Ag NPs)具有抗菌作用。但是,使用后的Ag NPs的其余核心可能对人体有毒作用。因此,已经制造出基于Ag离子的材料来替代Ag NP用于抗菌应用。然而,始终处于释放状态导致生物相容性低,这限制了它们的生物医学应用。另外,单一作用也限制了它们的抗菌能力。在此,通过将透明质酸(HA)涂覆在负载有Ag离子的光敏金属有机骨架上,制备出功能强大的表面适应性按需抗菌纳米平台,从而表现出强大的协同作用。纳米平台与非靶向细胞表现出良好的生物相容性,因为带负电荷的HA可以防止Ag离子的释放。当存在目标细菌时,分泌的透明质酸酶可以降解纳米平台上的HA并产生带正电的纳米颗粒,由于在可见光下释放的Ag离子和生成的活性氧,该纳米颗粒对细菌的亲和力增强,并表现出强大的协同抗菌作用辐射。重要的是,由于出色的按需抗菌性能,纳米平台在小鼠模型中对治疗多药耐药细菌感染的伤口也显示出巨大的作用。分泌的透明质酸酶可以降解纳米平台上的HA,并产生带正电的纳米粒子,由于可见光照射下释放的Ag离子和生成的活性氧,该纳米粒子对细菌的亲和力增强,并表现出强大的协同抗菌作用。重要的是,由于出色的按需抗菌性能,纳米平台在小鼠模型中对治疗多药耐药细菌感染的伤口也显示出巨大的作用。分泌的透明质酸酶可以降解纳米平台上的HA,并产生带正电的纳米粒子,由于可见光照射下释放的Ag离子和生成的活性氧,该纳米粒子对细菌的亲和力增强,并表现出强大的协同抗菌作用。重要的是,由于出色的按需抗菌性能,纳米平台在小鼠模型中对治疗多药耐药细菌感染的伤口也显示出巨大的作用。
更新日期:2019-01-25
中文翻译:
含银的卟啉金属有机框架:用于协同细菌杀灭和伤口消毒的表面适应性,按需纳米平台。
对抗多药耐药细菌的功能性纳米平台的制造至关重要。其中,银纳米颗粒(Ag NPs)具有抗菌作用。但是,使用后的Ag NPs的其余核心可能对人体有毒作用。因此,已经制造出基于Ag离子的材料来替代Ag NP用于抗菌应用。然而,始终处于释放状态导致生物相容性低,这限制了它们的生物医学应用。另外,单一作用也限制了它们的抗菌能力。在此,通过将透明质酸(HA)涂覆在负载有Ag离子的光敏金属有机骨架上,制备出功能强大的表面适应性按需抗菌纳米平台,从而表现出强大的协同作用。纳米平台与非靶向细胞表现出良好的生物相容性,因为带负电荷的HA可以防止Ag离子的释放。当存在目标细菌时,分泌的透明质酸酶可以降解纳米平台上的HA并产生带正电的纳米颗粒,由于在可见光下释放的Ag离子和生成的活性氧,该纳米颗粒对细菌的亲和力增强,并表现出强大的协同抗菌作用辐射。重要的是,由于出色的按需抗菌性能,纳米平台在小鼠模型中对治疗多药耐药细菌感染的伤口也显示出巨大的作用。分泌的透明质酸酶可以降解纳米平台上的HA,并产生带正电的纳米粒子,由于可见光照射下释放的Ag离子和生成的活性氧,该纳米粒子对细菌的亲和力增强,并表现出强大的协同抗菌作用。重要的是,由于出色的按需抗菌性能,纳米平台在小鼠模型中对治疗多药耐药细菌感染的伤口也显示出巨大的作用。分泌的透明质酸酶可以降解纳米平台上的HA,并产生带正电的纳米粒子,由于可见光照射下释放的Ag离子和生成的活性氧,该纳米粒子对细菌的亲和力增强,并表现出强大的协同抗菌作用。重要的是,由于出色的按需抗菌性能,纳米平台在小鼠模型中对治疗多药耐药细菌感染的伤口也显示出巨大的作用。