Sensors and Actuators B: Chemical ( IF 8.0 ) Pub Date : 2019-01-23 , DOI: 10.1016/j.snb.2019.01.109 Ziying Wang , Andre Sackmann , Shang Gao , Udo Weimar , Geyu Lu , Sen Liu , Tong Zhang , Nicolae Barsan
Highly selective oxidizing gas sensors are of great importance for environmental pollution monitoring. In this work, a hybrid material containing Zn2SnO4 nanoparticles (NPs) and immobilized reduced graphene oxide (Zn2SnO4-RGO) was developed as a high performance gas sensing material for the detection of ppb-levels of oxidizing gases (NO2 and O3). The structural, morphological and compositional properties of the Zn2SnO4-RGO hybrids were systematically characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS), which demonstrated the successful anchoring of Zn2SnO4 NPs on RGO nanosheets. The obtained Zn2SnO4-RGO hybrids exhibited outstanding sensing performance for detecting oxidizing gases (NO2 and O3) with very low cross sensitivities to reducing gases, such as C2H5OH, CH3COCH3 and CO. The Zn2SnO4-RGO based sensors exhibited high response values of up to 3.50 for 500 ppb NO2, which is higher than that for detection of 500 ppb O3 (1.78) at 30 °C under 50% relative humidity (RH). Moreover, the NO2 sensing performances of Zn2SnO4-RGO-based sensors were investigated under various RH. In all cases, the sensors based on RGO and Zn2SnO4-RGO hybrids presented p-type behavior. The sensors based on Zn2SnO4-RGO hybrids also exhibited high response values of up to 3.62 for 1 ppm NO2 at 50 °C in 80% RH, which is much higher than that of pure RGO (1.31). The excellent sensing performances are mainly ascribed to the synergetic effect of Zn2SnO4 NPs and RGO. Furthermore, the surface reaction between Zn2SnO4-RGO hybrids and NO2 can be concluded from Operando diffuse reflectance infrared Fourier transformed spectroscopy (Operando DRIFT).
中文翻译:
基于Zn 2 SnO 4纳米粒子固定在还原氧化石墨上的ppb级氧化气体传感器的高选择性传感行为研究。
高度选择性的氧化气体传感器对于环境污染监测非常重要。在这项工作中,开发了一种包含Zn 2 SnO 4纳米颗粒(NPs)和固定化还原氧化石墨烯(Zn 2 SnO 4 -RGO)的杂化材料,作为一种高性能的气体传感材料,用于检测ppb级的氧化性气体(NO 2和O 3)。通过X射线衍射(XRD),透射电子显微镜(TEM)和X射线光电子能谱(XPS)对Zn 2 SnO 4 -RGO杂化物的结构,形态和组成特性进行了系统表征。锌RGO纳米片上的2个SnO 4 NP。所得的Zn 2 SnO 4 -RGO杂化物表现出出色的感测性能,可检测对还原性气体(如C 2 H 5 OH,CH 3 COCH 3和CO )具有极低交叉敏感性的氧化性气体(NO 2和O 3)。2个基于SnO 4 -RGO的传感器对500 ppb NO 2表现出高达3.50的高响应值,高于在30%的温度和50%相对湿度(RH)下检测500 ppb O 3(1.78)的响应值。而且,NO 2在不同的相对湿度下研究了基于Zn 2 SnO 4 -RGO的传感器的传感性能。在所有情况下,基于RGO和Zn 2 SnO 4 -RGO杂化物的传感器均表现出p型行为。基于Zn 2 SnO 4 -RGO杂化物的传感器在50%的温度和80%相对湿度下对1 ppm NO 2表现出高达3.62的高响应值,远高于纯RGO的响应值(1.31)。优异的感测性能主要归因于Zn 2 SnO 4 NPs与RGO的协同作用。此外,Zn 2 SnO 4 -RGO杂化物与NO 2之间的表面反应 可以从Operando漫反射红外傅里叶变换光谱(Operando DRIFT)中得出结论。