当前位置: X-MOL 学术ChemCatChem › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Competitive Transient Electrostatic Adsorption for In Situ Regeneration of Poisoned Catalyst
ChemCatChem ( IF 3.8 ) Pub Date : 2019-02-01 , DOI: 10.1002/cctc.201802055
Yanbo Pan 1 , Xiaochen Shen 1 , Libo Yao 1 , Abdulaziz Bentalib 1 , Jinlong Yang 2 , Jie Zeng 2 , Zhenmeng Peng 1
Affiliation  

Catalyst deactivation by poisoning species is one important concern in catalysis processes and causes significant catalyst material and operation costs due to process shutdown and catalyst replacement. We report one new in situ catalyst regeneration method, which utilizes competitive electrostatic adsorption of charged ions which are generated with moderate DC voltage supply following the Townsend discharge mechanism to desorb poisoning species and the transient characteristic of electrostatically adsorbed ions to recover the active sites for catalysis. We demonstrate effectiveness of this new concept using HCOOH decomposition on Pt catalyst as model reaction and find the deactivated Pt regains the activity in presence of Ar+ generation. DFT simulations and classical electrical discharge calculations show Ar+ ions have significantly higher electrostatic adsorption energy than desorption energy of CO poisoning species that helps to desorb CO from Pt and generate more available active sites. This new in situ catalyst regeneration method, with convenient, noninvasive and low operation cost features, provides a promising strategy to overcome the challenges associated with current technologies that handle catalyst deactivation.

中文翻译:

竞争性瞬态静电吸附中毒催化剂的原位再生

由中毒物质引起的催化剂失活是催化过程中的重要问题之一,并且由于过程停工和催化剂更换而导致显着的催化剂材料和操作成本。我们报告了一种新的原位催化剂再生方法,该方法利用竞争性的带电离子静电吸附,该离子在遵循Townsend放电机制后通过适度的直流电压供应产生,以解毒物质和静电吸附离子的瞬态特性,以恢复催化的活性位点。 。我们证明了在Pt催化剂上使用HCOOH分解作为模型反应的这一新概念的有效性,发现失活的Pt在Ar +生成的情况下重新获得了活性。DFT模拟和经典放电计算显示Ar+离子具有比CO中毒物质的解吸能高得多的静电吸附能,这有助于从Pt解吸CO并生成更多可用的活性位点。这种新型的原位催化剂再生方法具有方便,无创且运行成本低的特点,为克服与处理催化剂失活的现有技术相关的挑战提供了一种有前途的策略。
更新日期:2019-02-01
down
wechat
bug