当前位置:
X-MOL 学术
›
Adv. Energy Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
In Situ Synthesis of Hierarchical Core Double‐Shell Ti‐Doped LiMnPO4@NaTi2(PO4)3@C/3D Graphene Cathode with High‐Rate Capability and Long Cycle Life for Lithium‐Ion Batteries
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2019-01-15 , DOI: 10.1002/aenm.201802847
Longwei Liang 1 , Xuan Sun 1 , Jinyang Zhang 1 , Linrui Hou 1 , Jinfeng Sun 1 , Yang Liu 1 , Shuguang Wang 1 , Changzhou Yuan 1
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2019-01-15 , DOI: 10.1002/aenm.201802847
Longwei Liang 1 , Xuan Sun 1 , Jinyang Zhang 1 , Linrui Hou 1 , Jinfeng Sun 1 , Yang Liu 1 , Shuguang Wang 1 , Changzhou Yuan 1
Affiliation
![]() |
Olivine‐type LiMnPO4 (LMP) cathodes have gained enormous attraction for Li‐ion batteries (LIBs), thanks to their large theoretical capacity, high discharge platform, and thermal stability. However, it is still hugely challenging to achieve encouraging Li‐storage behaviors owing to their low electronic conductivity and limited lithium diffusion. Herein, the core double‐shell Ti‐doped LMP@NaTi2(PO4)3@C/3D graphene (TLMP@NTP@C/3D‐G) architecture is designed and constructed via an in situ synthetic methodology. A continuous electronic conducting network is formed with the unfolded 3D‐G and conducting carbon nanoshell. The Nasicon‐type NTP nanoshell with exceptional ionic conductivity efficiently inhibits gradual enrichment in by‐products, and renders low surfacial/interfacial electron/ion‐diffusion resistance. Besides, a rapid Li+ diffusion in the bulk structure is guaranteed with the reduction of MnLi+˙ antisite defects originating from the synchronous Ti‐doping. Benefiting from synergetic contributions from these design rationales, the integrated TLMP@NTP@C/3D‐G cathode yields high initial discharge capacity of ≈164.8 mAh g−1 at 0.05 C, high‐rate reversible capacity of ≈116.2 mAh g−1 at 10 C, and long‐term capacity retention of ≈93.3% after 600 cycles at 2 C. More significantly, the electrode design developed here will exert significant impact upon constructing other advanced cathodes for high‐energy/power LIBs.
中文翻译:
锂离子电池分级芯双壳掺钛LiMnPO4 @ NaTi2(PO4)3 @ C / 3D石墨烯阴极的原位合成
橄榄石型LiMnPO 4(LMP)正极由于其理论容量大,高放电平台和热稳定性而获得了锂离子电池(LIB)的巨大吸引力。然而,由于其低电导率和有限的锂扩散,实现令人鼓舞的锂存储行为仍然是巨大的挑战。此处,核心双壳掺钛LMP @ NaTi 2(PO 4)3@ C / 3D石墨烯(TLMP @ NTP @ C / 3D‐G)体系结构是通过原位合成方法设计和构建的。连续的电子导电网络由展开的3D-G和导电碳纳米壳形成。具有出色离子传导性的Nasicon型NTP纳米壳可有效抑制副产物的逐渐富集,并降低了表面/界面电子/离子扩散阻力。此外,由于同步Ti掺杂引起的Mn Li + ˙反位缺陷的减少,保证了块体结构中Li +的快速扩散。得益于这些设计原理的协同作用,集成的TLMP @ NTP @ C / 3D‐G阴极可产生约164.8 mAh g -1的高初始放电容量在0.05 C下,10 C下的高速率可逆容量为≈116.2mAh g -1,在2 C下600次循环后的长期容量保持率为≈93.3%。更重要的是,此处开发的电极设计将对为高能/功率LIB建造其他先进的阴极。
更新日期:2019-01-15
中文翻译:

锂离子电池分级芯双壳掺钛LiMnPO4 @ NaTi2(PO4)3 @ C / 3D石墨烯阴极的原位合成
橄榄石型LiMnPO 4(LMP)正极由于其理论容量大,高放电平台和热稳定性而获得了锂离子电池(LIB)的巨大吸引力。然而,由于其低电导率和有限的锂扩散,实现令人鼓舞的锂存储行为仍然是巨大的挑战。此处,核心双壳掺钛LMP @ NaTi 2(PO 4)3@ C / 3D石墨烯(TLMP @ NTP @ C / 3D‐G)体系结构是通过原位合成方法设计和构建的。连续的电子导电网络由展开的3D-G和导电碳纳米壳形成。具有出色离子传导性的Nasicon型NTP纳米壳可有效抑制副产物的逐渐富集,并降低了表面/界面电子/离子扩散阻力。此外,由于同步Ti掺杂引起的Mn Li + ˙反位缺陷的减少,保证了块体结构中Li +的快速扩散。得益于这些设计原理的协同作用,集成的TLMP @ NTP @ C / 3D‐G阴极可产生约164.8 mAh g -1的高初始放电容量在0.05 C下,10 C下的高速率可逆容量为≈116.2mAh g -1,在2 C下600次循环后的长期容量保持率为≈93.3%。更重要的是,此处开发的电极设计将对为高能/功率LIB建造其他先进的阴极。