当前位置:
X-MOL 学术
›
Nat. Commun.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Non defect-stabilized thermally stable single-atom catalyst.
Nature Communications ( IF 14.7 ) Pub Date : 2019-01-16 , DOI: 10.1038/s41467-018-08136-3 Rui Lang 1 , Wei Xi 2 , Jin-Cheng Liu 3 , Yi-Tao Cui 4 , Tianbo Li 1, 5 , Adam Fraser Lee 6 , Fang Chen 1 , Yang Chen 1, 5 , Lei Li 7 , Lin Li 1 , Jian Lin 1 , Shu Miao 1 , Xiaoyan Liu 1 , Ai-Qin Wang 1 , Xiaodong Wang 1 , Jun Luo 2 , Botao Qiao 1, 8 , Jun Li 3, 9 , Tao Zhang 1
Nature Communications ( IF 14.7 ) Pub Date : 2019-01-16 , DOI: 10.1038/s41467-018-08136-3 Rui Lang 1 , Wei Xi 2 , Jin-Cheng Liu 3 , Yi-Tao Cui 4 , Tianbo Li 1, 5 , Adam Fraser Lee 6 , Fang Chen 1 , Yang Chen 1, 5 , Lei Li 7 , Lin Li 1 , Jian Lin 1 , Shu Miao 1 , Xiaoyan Liu 1 , Ai-Qin Wang 1 , Xiaodong Wang 1 , Jun Luo 2 , Botao Qiao 1, 8 , Jun Li 3, 9 , Tao Zhang 1
Affiliation
Surface-supported isolated atoms in single-atom catalysts (SACs) are usually stabilized by diverse defects. The fabrication of high-metal-loading and thermally stable SACs remains a formidable challenge due to the difficulty of creating high densities of underpinning stable defects. Here we report that isolated Pt atoms can be stabilized through a strong covalent metal-support interaction (CMSI) that is not associated with support defects, yielding a high-loading and thermally stable SAC by trapping either the already deposited Pt atoms or the PtO2 units vaporized from nanoparticles during high-temperature calcination. Experimental and computational modeling studies reveal that iron oxide reducibility is crucial to anchor isolated Pt atoms. The resulting high concentrations of single atoms enable specific activities far exceeding those of conventional nanoparticle catalysts. This non defect-stabilization strategy can be extended to non-reducible supports by simply doping with iron oxide, thus paving a new way for constructing high-loading SACs for diverse industrially important catalytic reactions.
中文翻译:
非缺陷稳定的热稳定单原子催化剂。
单原子催化剂(SAC)中的表面负载离析原子通常通过各种缺陷来稳定。高金属负载和热稳定的SAC的制造仍然是一个艰巨的挑战,因为很难产生高密度的稳定缺陷。在这里我们报告说,孤立的Pt原子可以通过与支撑缺陷无关的强共价金属-载体相互作用(CMSI)来稳定,通过捕获已经沉积的Pt原子或PtO2单元产生高负载和热稳定的SAC在高温煅烧过程中从纳米颗粒中蒸发掉。实验和计算模型研究表明,氧化铁还原性对于锚定孤立的Pt原子至关重要。所产生的高浓度单原子能够实现比活性远远超出常规纳米颗粒催化剂的比活性。只需掺杂氧化铁,就可以将这种非缺陷稳定化策略扩展到不可还原的载体,从而为构建高负载SAC提供了新的途径,以用于各种工业上重要的催化反应。
更新日期:2019-01-16
中文翻译:
非缺陷稳定的热稳定单原子催化剂。
单原子催化剂(SAC)中的表面负载离析原子通常通过各种缺陷来稳定。高金属负载和热稳定的SAC的制造仍然是一个艰巨的挑战,因为很难产生高密度的稳定缺陷。在这里我们报告说,孤立的Pt原子可以通过与支撑缺陷无关的强共价金属-载体相互作用(CMSI)来稳定,通过捕获已经沉积的Pt原子或PtO2单元产生高负载和热稳定的SAC在高温煅烧过程中从纳米颗粒中蒸发掉。实验和计算模型研究表明,氧化铁还原性对于锚定孤立的Pt原子至关重要。所产生的高浓度单原子能够实现比活性远远超出常规纳米颗粒催化剂的比活性。只需掺杂氧化铁,就可以将这种非缺陷稳定化策略扩展到不可还原的载体,从而为构建高负载SAC提供了新的途径,以用于各种工业上重要的催化反应。