当前位置: X-MOL 学术NeuroImage › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer's disease
NeuroImage ( IF 4.7 ) Pub Date : 2019-04-01 , DOI: 10.1016/j.neuroimage.2019.01.031
Simeon Spasov 1 , Luca Passamonti 2 , Andrea Duggento 3 , Pietro Liò 1 , Nicola Toschi 4 ,
Affiliation  

ABSTRACT Some forms of mild cognitive impairment (MCI) are the clinical precursors of Alzheimer's disease (AD), while other MCI types tend to remain stable over‐time and do not progress to AD. To identify and choose effective and personalized strategies to prevent or slow the progression of AD, we need to develop objective measures that are able to discriminate the MCI patients who are at risk of AD from those MCI patients who have less risk to develop AD. Here, we present a novel deep learning architecture, based on dual learning and an ad hoc layer for 3D separable convolutions, which aims at identifying MCI patients who have a high likelihood of developing AD within 3 years. Our deep learning procedures combine structural magnetic resonance imaging (MRI), demographic, neuropsychological, and APOe4 genetic data as input measures. The most novel characteristics of our machine learning model compared to previous ones are the following: 1) our deep learning model is multi‐tasking, in the sense that it jointly learns to simultaneously predict both MCI to AD conversion as well as AD vs. healthy controls classification, which facilitates relevant feature extraction for AD prognostication; 2) the neural network classifier employs fewer parameters than other deep learning architectures which significantly limits data‐overfitting (we use ˜550,000 network parameters, which is orders of magnitude lower than other network designs); 3) both structural MRI images and their warp field characteristics, which quantify local volumetric changes in relation to the MRI template, were used as separate input streams to extract as much information as possible from the MRI data. All analyses were performed on a subset of the database made publicly available via the Alzheimer's Disease Neuroimaging Initiative (ADNI), (n=785 participants, n=192 AD patients, n=409 MCI patients (including both MCI patients who convert to AD and MCI patients who do not covert to AD), and n=184 healthy controls). The most predictive combination of inputs were the structural MRI images and the demographic, neuropsychological, and APOe4 data. In contrast, the warp field metrics were of little added predictive value. The algorithm was able to distinguish the MCI patients developing AD within 3 years from those patients with stable MCI over the same time‐period with an area under the curve (AUC) of 0.925 and a 10‐fold cross‐validated accuracy of 86%, a sensitivity of 87.5%, and specificity of 85%. To our knowledge, this is the highest performance achieved so far using similar datasets. The same network provided an AUC of 1 and 100% accuracy, sensitivity, and specificity when classifying patients with AD from healthy controls. Our classification framework was also robust to the use of different co‐registration templates and potentially irrelevant features/image portions. Our approach is flexible and can in principle integrate other imaging modalities, such as PET, and diverse other sets of clinical data. The convolutional framework is potentially applicable to any 3D image dataset and gives the flexibility to design a computer‐aided diagnosis system targeting the prediction of several medical conditions and neuropsychiatric disorders via multi‐modal imaging and tabular clinical data.

中文翻译:

一种参数高效的深度学习方法,用于预测从轻度认知障碍到阿尔茨海默病的转化

摘要 某些形式的轻度认知障碍 (MCI) 是阿尔茨海默病 (AD) 的临床前兆,而其他 MCI 类型往往会随着时间的推移保持稳定,不会发展为 AD。为了识别和选择有效和个性化的策略来预防或减缓 AD 的进展,我们需要制定客观的措施,能够区分有 AD 风险的 MCI 患者和那些发生 AD 风险较低的 MCI 患者。在这里,我们提出了一种新颖的深度学习架构,基于对偶学习和一个用于 3D 可分离卷积的 ad hoc 层,旨在识别在 3 年内发展为 AD 的可能性很高的 MCI 患者。我们的深度学习程序结合了结构磁共振成像 (MRI)、人口统计学、神经心理学和 APOe4 基因数据作为输入措施。与以前的模型相比,我们的机器学习模型最新颖的特征如下:1)我们的深度学习模型是多任务的,从这个意义上说,它联合学习同时预测 MCI 到 AD 转换以及 AD 与健康控制分类,便于AD预测的相关特征提取;2)神经网络分类器使用的参数比其他深度学习架构少,这显着限制了数据过拟合(我们使用了约 550,000 个网络参数,比其他网络设计低几个数量级);3)结构 MRI 图像及其扭曲场特征(量化与 MRI 模板相关的局部体积变化)被用作单独的输入流,以从 MRI 数据中提取尽可能多的信息。所有分析均对通过阿尔茨海默病神经影像学倡议 (ADNI) 公开提供的数据库子集进行,(n=785 名参与者,n=192 名 AD 患者,n=409 名 MCI 患者(包括转变为 AD 和未转化为 AD 的 MCI 患者),以及 n=184 名健康对照)。最具预测性的输入组合是结构 MRI 图像和人口统计学、神经心理学和 APOe4 数据。相比之下,翘曲场指标几乎没有增加的预测价值。该算法能够将 3 年内发生 AD 的 MCI 患者与同一时间段内发生稳定 MCI 的患者区分开来,曲线下面积 (AUC) 为 0.925,10 倍交叉验证准确度为 86%,敏感性为 87.5%,特异性为 85%。据我们所知,这是迄今为止使用类似数据集实现的最高性能。在将 AD 患者与健康对照组进行分类时,同一网络提供了 1 和 100% 的准确度、敏感性和特异性的 AUC。我们的分类框架对于使用不同的配准模板和可能不相关的特征/图像部分也很稳健。我们的方法很灵活,原则上可以整合其他成像方式,例如 PET,以及其他各种临床数据集。卷积框架可能适用于任何 3D 图像数据集,并提供了设计计算机辅助诊断系统的灵活性,该系统针对通过多模态成像和表格临床数据预测多种医疗状况和神经精神疾病。在将 AD 患者与健康对照组进行分类时,同一网络提供了 1 和 100% 的准确度、敏感性和特异性的 AUC。我们的分类框架对于使用不同的配准模板和可能不相关的特征/图像部分也很稳健。我们的方法很灵活,原则上可以整合其他成像方式,例如 PET,以及其他各种临床数据集。卷积框架可能适用于任何 3D 图像数据集,并提供了设计计算机辅助诊断系统的灵活性,该系统针对通过多模态成像和表格临床数据预测多种医疗状况和神经精神疾病。在将 AD 患者与健康对照组进行分类时,同一网络提供了 1 和 100% 的准确度、敏感性和特异性的 AUC。我们的分类框架对于使用不同的配准模板和可能不相关的特征/图像部分也很稳健。我们的方法很灵活,原则上可以整合其他成像方式,例如 PET,以及其他各种临床数据集。卷积框架可能适用于任何 3D 图像数据集,并提供了设计计算机辅助诊断系统的灵活性,该系统针对通过多模态成像和表格临床数据预测多种医疗状况和神经精神疾病。我们的分类框架对于使用不同的配准模板和可能不相关的特征/图像部分也很稳健。我们的方法很灵活,原则上可以整合其他成像方式,例如 PET,以及其他各种临床数据集。卷积框架可能适用于任何 3D 图像数据集,并提供了设计计算机辅助诊断系统的灵活性,该系统针对通过多模态成像和表格临床数据预测多种医疗状况和神经精神疾病。我们的分类框架对于使用不同的配准模板和可能不相关的特征/图像部分也很稳健。我们的方法很灵活,原则上可以整合其他成像方式,例如 PET,以及其他各种临床数据集。卷积框架可能适用于任何 3D 图像数据集,并提供了设计计算机辅助诊断系统的灵活性,该系统针对通过多模态成像和表格临床数据预测多种医疗状况和神经精神疾病。
更新日期:2019-04-01
down
wechat
bug