当前位置:
X-MOL 学术
›
Angew. Chem. Int. Ed.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Evolution of Oxygen–Metal Electron Transfer and Metal Electronic States During Manganese Oxide Catalyzed Water Oxidation Revealed with In Situ Soft X‐Ray Spectroscopy
Angewandte Chemie International Edition ( IF 16.1 ) Pub Date : 2019-02-06 , DOI: 10.1002/anie.201810825 Marc F. Tesch 1, 2 , Shannon A. Bonke 3, 4, 5 , Travis E. Jones 6 , Maryam N. Shaker 1, 7 , Jie Xiao 1 , Katarzyna Skorupska 2, 6 , Rik Mom 6 , Jens Melder 8 , Philipp Kurz 8 , Axel Knop‐Gericke 6 , Robert Schlögl 2, 6 , Rosalie K. Hocking 9 , Alexandr N. Simonov 3
Angewandte Chemie International Edition ( IF 16.1 ) Pub Date : 2019-02-06 , DOI: 10.1002/anie.201810825 Marc F. Tesch 1, 2 , Shannon A. Bonke 3, 4, 5 , Travis E. Jones 6 , Maryam N. Shaker 1, 7 , Jie Xiao 1 , Katarzyna Skorupska 2, 6 , Rik Mom 6 , Jens Melder 8 , Philipp Kurz 8 , Axel Knop‐Gericke 6 , Robert Schlögl 2, 6 , Rosalie K. Hocking 9 , Alexandr N. Simonov 3
Affiliation
Manganese oxide (MnOx) electrocatalysts are examined herein by in situ soft X‐ray absorption spectroscopy (XAS) and resonant inelastic X‐ray scattering (RIXS) during the oxidation of water buffered by borate (pH 9.2) at potentials from 0.75 to 2.25 V vs. the reversible hydrogen electrode. Correlation of L‐edge XAS data with previous mechanistic studies indicates MnIV is the highest oxidation state involved in the catalytic mechanism. MnOx is transformed into birnessite at 1.45 V and does not undergo further structural phase changes. At potentials beyond this transformation, RIXS spectra show progressive enhancement of charge transfer transitions from oxygen to manganese. Theoretical analysis of these data indicates increased hybridization of the Mn−O orbitals and withdrawal of electron density from the O ligand shell. In situ XAS experiments at the O K‐edge provide complementary evidence for such a transition. This step is crucial for the formation of O2 from water.
中文翻译:
氧化锰催化水氧化过程中氧金属电子转移和金属电子态的演化通过原位软X射线光谱显示
本文通过在0.75至2.25的电势下由硼酸盐(pH 9.2)缓冲的水氧化过程中的原位软X射线吸收光谱(XAS)和共振非弹性X射线散射(RIXS)检查了锰氧化物(MnO x)电催化剂。 V与可逆氢电极的关系。L边缘XAS数据与以前的机理研究的相关性表明Mn IV是参与催化机理的最高氧化态。MnO的X在1.45 V时会转变成水钠锰矿,并且不会发生进一步的结构相变。在超出该转变的电势下,RIXS光谱显示出电荷转移从氧到锰的逐步增强。这些数据的理论分析表明,Mn-O轨道的杂化增加,并且电子密度从O配体壳中撤出。OK-edge的原位XAS实验为这种过渡提供了补充证据。该步骤对于由水形成O 2至关重要。
更新日期:2019-02-06
中文翻译:
氧化锰催化水氧化过程中氧金属电子转移和金属电子态的演化通过原位软X射线光谱显示
本文通过在0.75至2.25的电势下由硼酸盐(pH 9.2)缓冲的水氧化过程中的原位软X射线吸收光谱(XAS)和共振非弹性X射线散射(RIXS)检查了锰氧化物(MnO x)电催化剂。 V与可逆氢电极的关系。L边缘XAS数据与以前的机理研究的相关性表明Mn IV是参与催化机理的最高氧化态。MnO的X在1.45 V时会转变成水钠锰矿,并且不会发生进一步的结构相变。在超出该转变的电势下,RIXS光谱显示出电荷转移从氧到锰的逐步增强。这些数据的理论分析表明,Mn-O轨道的杂化增加,并且电子密度从O配体壳中撤出。OK-edge的原位XAS实验为这种过渡提供了补充证据。该步骤对于由水形成O 2至关重要。