当前位置: X-MOL 学术J. Mater. Chem. A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Atomic Fe hetero-layered coordination between g-C3N4 and graphene nanomeshes enhances the ORR electrocatalytic performance of zinc–air batteries†
Journal of Materials Chemistry A ( IF 10.7 ) Pub Date : 2018-12-25 00:00:00 , DOI: 10.1039/c8ta09722d
Congwei Wang 1, 2, 3, 4, 5 , Huifang Zhao 1, 2, 3, 4, 5 , Jie Wang 1, 2, 3, 4, 5 , Zheng Zhao 1, 2, 3, 4, 5 , Miao Cheng 1, 2, 3, 4, 5 , Xiaoyong Duan 1, 2, 3, 4, 5 , Qin Zhang 1, 2, 3, 4, 5 , Junying Wang 1, 2, 3, 4, 5 , Junzhong Wang 1, 2, 3, 4, 5
Affiliation  

Hetero-layered iron–nitrogen coordination between g-C3N4 and graphene nanomeshes was developed for superior electrocatalytic activity in the oxygen reduction reaction. Compared with the performance of g-C3N4 or atomic Fe embedded in g-C3N4 in the oxygen reduction reaction, the current density at −0.5 V of the two-dimensional hetero-hybrid of atomic Fe, g-C3N4 and graphene was enhanced 13 times, and the half-wave potential of the hybrid positively shifted to 0.278 V. The hybrid exhibited superior electrocatalytic activity with a 20 mV more positive half-wave potential, higher current density, better methanol tolerance and longer-term stability compared to commercial Pt–C. This enhancement originated from mesh-on-mesh exposed inter-layer bridged Fe–N4.1 coordination active sites between g-C3N4 and graphene, which favored a four-electron pathway accompanied by the improvement of the conductivity and mass transport. Superior performance, including a low charge–discharge voltage gap over 20 h of cyling, of the hybrid-based Zn–air battery was achieved. This strategy of the hetero-layered interfacial metal–nitrogen coordination between different 2D materials is a general approach to develop advanced electrocatalysts for sustainable energy applications.

中文翻译:

gC 3 N 4与石墨烯纳米网格之间的原子铁杂层配位增强了锌空气电池的ORR电催化性能

已开发出gC 3 N 4与石墨烯纳米网之间的杂层铁-氮配位,以在氧还原反应中具有优异的电催化活性。与氧还原反应中gC 3 N 4或嵌入gC 3 N 4中的原子Fe的性能相比,原子Fe的二维杂杂化合物gC 3 N 4在-0.5 V时的电流密度石墨烯增强了13倍,杂化体的半波电势正移至0.278V。杂化体显示出优异的电催化活性,正半波电势提高20 mV,电流密度更高,甲醇耐受性更强,长期使用与商业Pt–C相比,稳定性更高。这种增强作用源自gC 3 N 4之间暴露于网眼的层间桥接Fe–N 4.1配位活性位点石墨烯,它有利于四电子途径,伴随着电导率和质量传输的改善。混合动力型Zn-空气电池具有卓越的性能,包括在充电20小时后的低充放电电压间隙。不同2D材料之间的异质层界面金属-氮配位的这种策略是开发用于可持续能源应用的高级电催化剂的通用方法。
更新日期:2018-12-25
down
wechat
bug