当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A Stretchable Strain-Insensitive Temperature Sensor Based on Free-Standing Elastomeric Composite Fibers for On-Body Monitoring of Skin Temperature
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2018-12-20 00:00:00 , DOI: 10.1021/acsami.8b19425
Tran Quang Trung , Thi My Linh Dang 1 , Subramaniyan Ramasundaram , Phan Tan Toi , Sang Yoon Park 1 , Nae-Eung Lee
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2018-12-20 00:00:00 , DOI: 10.1021/acsami.8b19425
Tran Quang Trung , Thi My Linh Dang 1 , Subramaniyan Ramasundaram , Phan Tan Toi , Sang Yoon Park 1 , Nae-Eung Lee
Affiliation
![]() |
To realize the potential applications of stretchable sensors in the field of wearable health monitoring, it is essential to develop a stable sensing device with robust electrical and mechanical properties in the present of varying external conditions. Herein, we demonstrate a stretchable temperature sensor with the elimination of strain-induced interference via geometric engineering of the free-standing stretchable fibers (FSSFs) of reduced graphene oxide/polyurethane composite. The FSSFs were formed in serpentine structures and enabled the implementation of a strain-insensitive stretchable temperature sensor. On the basis of the controlled reduction time of graphene oxide, we can modulate the response and thermal index of the device. These results are attributed to the variation in the density of oxygen-containing functional groups in the FSSFs, which affect the hopping charge transport and thermal generation of excess carriers. The FSSF temperature sensor yields increased responsivity (0.8%/°C), stretchability (90%), sensing resolution (0.1 °C), and stability in response to applied stretching (±0.37 °C for strains ranging from 0 to 50%). When the sensor is sewn onto a stretchable bandage and attached to the human body, it can detect the temperature changes of the human skin during different body motions in a continuous and stable manner.
中文翻译:
基于自由弹性复合纤维的可拉伸应变不敏感温度传感器,用于人体皮肤温度监测
为了实现可伸缩传感器在可穿戴健康监控领域的潜在应用,必须开发一种在外部环境变化的情况下具有强大电气和机械性能的稳定传感设备。在这里,我们展示了一种可拉伸温度传感器,该传感器可通过对还原的氧化石墨烯/聚氨酯复合材料的自立可拉伸纤维(FSSF)进行几何工程来消除应变引起的干扰。FSSF形成为蛇形结构,可以实现对应变不敏感的可拉伸温度传感器。在受控的氧化石墨烯还原时间的基础上,我们可以调节器件的响应和热指数。这些结果归因于FSSF中含氧官能团的密度变化,这会影响多余载流子的跳变电荷传输和热生成。FSSF温度传感器可提高响应度(0.8%/°C),可拉伸性(90%),感测分辨率(0.1°C)和响应于施加拉伸的稳定性(对于范围为0至50%的应变为±0.37°C) 。当传感器缝在可伸缩绷带上并附着在人体上时,它可以连续,稳定地检测人体不同运动期间人体皮肤的温度变化。
更新日期:2018-12-20
中文翻译:

基于自由弹性复合纤维的可拉伸应变不敏感温度传感器,用于人体皮肤温度监测
为了实现可伸缩传感器在可穿戴健康监控领域的潜在应用,必须开发一种在外部环境变化的情况下具有强大电气和机械性能的稳定传感设备。在这里,我们展示了一种可拉伸温度传感器,该传感器可通过对还原的氧化石墨烯/聚氨酯复合材料的自立可拉伸纤维(FSSF)进行几何工程来消除应变引起的干扰。FSSF形成为蛇形结构,可以实现对应变不敏感的可拉伸温度传感器。在受控的氧化石墨烯还原时间的基础上,我们可以调节器件的响应和热指数。这些结果归因于FSSF中含氧官能团的密度变化,这会影响多余载流子的跳变电荷传输和热生成。FSSF温度传感器可提高响应度(0.8%/°C),可拉伸性(90%),感测分辨率(0.1°C)和响应于施加拉伸的稳定性(对于范围为0至50%的应变为±0.37°C) 。当传感器缝在可伸缩绷带上并附着在人体上时,它可以连续,稳定地检测人体不同运动期间人体皮肤的温度变化。