当前位置:
X-MOL 学术
›
ChemElectroChem
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Electrochemistry at Deep‐Sea Hydrothermal Vents: Utilization of the Thermodynamic Driving Force towards the Autotrophic Origin of Life
ChemElectroChem ( IF 3.5 ) Pub Date : 2019-01-25 , DOI: 10.1002/celc.201801432 Hideshi Ooka 1 , Shawn E. McGlynn 1, 2, 3 , Ryuhei Nakamura 1, 2
ChemElectroChem ( IF 3.5 ) Pub Date : 2019-01-25 , DOI: 10.1002/celc.201801432 Hideshi Ooka 1 , Shawn E. McGlynn 1, 2, 3 , Ryuhei Nakamura 1, 2
Affiliation
Temperature gradients are an under‐utilized source of energy with which to drive chemical reactions. Here, we review our past efforts to understand how deep‐sea hydrothermal vents may harness thermal energy to promote difficult chemical reactions such as CO2 reduction. Strategies to amplify the driving force using temperature will be covered first, followed by a discussion on how spatially separated thermodynamic gradients can be used to regulate reaction selectivity. Although desirable material properties of hydrothermal vent walls have been inferred previously from the bioenergetic membranes of modern cells, strategies based on fundamental laws of physical chemistry allow naturally occurring chimney minerals to circumvent the lack of structural and catalytic optimization. The principles that underlie both the establishment and the utilization of the thermodynamic driving force at hydrothermal vents can be employed in abiotic systems such as the modern chemical industry, yielding insight into carbon fixation reactions important today and possibly at the autotrophic origin of life.
中文翻译:
深海热液喷口的电化学:利用热力学驱动力实现生命的自养
温度梯度是利用不足的能源,无法驱动化学反应。在这里,我们回顾了过去的工作,以了解深海热液喷口如何利用热能促进难于发生的化学反应,例如CO 2减少。首先将介绍使用温度放大驱动力的策略,然后讨论如何使用空间分离的热力学梯度来调节反应选择性。尽管以前已经从现代细胞的生物能膜中推断出了热液喷口壁的理想材料性能,但是基于物理化学基本定律的策略允许天然存在的烟囱矿物避免缺乏结构和催化优化。在热液喷口处建立和利用热力学驱动力的原理可以用在非生物系统(例如现代化学工业)中,从而深入了解当今重要的碳固定反应,并且可能是生命的自养起源。
更新日期:2019-01-25
中文翻译:
深海热液喷口的电化学:利用热力学驱动力实现生命的自养
温度梯度是利用不足的能源,无法驱动化学反应。在这里,我们回顾了过去的工作,以了解深海热液喷口如何利用热能促进难于发生的化学反应,例如CO 2减少。首先将介绍使用温度放大驱动力的策略,然后讨论如何使用空间分离的热力学梯度来调节反应选择性。尽管以前已经从现代细胞的生物能膜中推断出了热液喷口壁的理想材料性能,但是基于物理化学基本定律的策略允许天然存在的烟囱矿物避免缺乏结构和催化优化。在热液喷口处建立和利用热力学驱动力的原理可以用在非生物系统(例如现代化学工业)中,从而深入了解当今重要的碳固定反应,并且可能是生命的自养起源。