当前位置:
X-MOL 学术
›
Polym. Chem.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
One-way and two-way shape memory effects of a high-strain cis-1,4-polybutadiene–polyethylene copolymer based dynamic network via self-complementary quadruple hydrogen bonding†
Polymer Chemistry ( IF 4.1 ) Pub Date : 2018-12-07 00:00:00 , DOI: 10.1039/c8py01614c Qi Yang 1, 2, 3, 4, 5 , Wenjie Zheng 1, 2, 3, 4, 5 , Wenpeng Zhao 1, 2, 3, 4, 5 , Chuang Peng 1, 2, 3, 4, 5 , Juntao Ren 1, 2, 3, 4, 5 , Qizhou Yu 1, 2, 3, 4, 5 , Yanming Hu 1, 2, 3, 4, 5 , Xuequan Zhang 1, 2, 3, 4, 5
Polymer Chemistry ( IF 4.1 ) Pub Date : 2018-12-07 00:00:00 , DOI: 10.1039/c8py01614c Qi Yang 1, 2, 3, 4, 5 , Wenjie Zheng 1, 2, 3, 4, 5 , Wenpeng Zhao 1, 2, 3, 4, 5 , Chuang Peng 1, 2, 3, 4, 5 , Juntao Ren 1, 2, 3, 4, 5 , Qizhou Yu 1, 2, 3, 4, 5 , Yanming Hu 1, 2, 3, 4, 5 , Xuequan Zhang 1, 2, 3, 4, 5
Affiliation
A high-strain shape memory polymer, cis-1,4-polybutadiene–polyethylene (CPB-PE) semicrystalline copolymer with 2-ureido-4[1H]pyrimidinone (UPy) side groups (UHPB), was synthesized by grafting UPy groups onto CPB and a subsequent partial hydrogenation reaction. In the shape memory process, the robust physical crosslinking via hydrogen bonding through UPy dimerization provided the permanent network, while the crystalline PE segments served as a switching phase to afford the temporary network. The broad melting transition ranging from 35.1 to 84.2 °C allowed this material to achieve multi-shape memory behaviors by choosing two and more switching temperatures within or above the melting transition. The shape memory performance was markedly influenced by the selected critical switching temperature; in other words, the shape fixity and recovery were dependent on the fraction of the recrystallized and remelted PE phase during shape fixing and recovery processes, respectively. The two-way shape memory effect under a constant load of this system was also attained by the crystallization-induced elongation and melting-induced contraction of the PE segments in UHPB. Moreover, UHPB exhibited an excellent recoverable high-strain capacity; the shape recovery reached 96.2% at a high strain of 480%.
中文翻译:
高应变顺式-1,4-聚丁二烯-聚乙烯共聚物基于动态网络的单向和双向形状记忆效应,通过自互补四氢键†
通过接枝UPy基团合成了具有2-脲基-4 [ 1H ]嘧啶酮(UPy)侧基(UHPB)的高应变形状记忆聚合物,顺式-1,4-聚丁二烯-聚乙烯(CPB-PE)半结晶共聚物。到CPB上,随后进行部分氢化反应。在形状记忆过程中,通过通过UPy二聚作用形成的氢键提供了永久性网络,而结晶PE段则作为交换阶段提供了临时性网络。在35.1至84.2°C的宽熔融转变温度范围内,该材料可以通过选择在熔融转变之内或之上的两个或多个转换温度来实现多种形状的记忆行为。形状记忆性能明显受到所选临界开关温度的影响。换句话说,形状固定和恢复分别取决于形状固定和恢复过程中重结晶和重熔的PE相的比例。在UHPB中,PE链段的结晶诱导伸长和熔融诱导收缩也获得了在该系统恒定载荷下的双向形状记忆效应。而且,UHPB具有出色的可恢复高应变能力;在480%的高应变下,形状恢复率达到96.2%。
更新日期:2018-12-07
中文翻译:
高应变顺式-1,4-聚丁二烯-聚乙烯共聚物基于动态网络的单向和双向形状记忆效应,通过自互补四氢键†
通过接枝UPy基团合成了具有2-脲基-4 [ 1H ]嘧啶酮(UPy)侧基(UHPB)的高应变形状记忆聚合物,顺式-1,4-聚丁二烯-聚乙烯(CPB-PE)半结晶共聚物。到CPB上,随后进行部分氢化反应。在形状记忆过程中,通过通过UPy二聚作用形成的氢键提供了永久性网络,而结晶PE段则作为交换阶段提供了临时性网络。在35.1至84.2°C的宽熔融转变温度范围内,该材料可以通过选择在熔融转变之内或之上的两个或多个转换温度来实现多种形状的记忆行为。形状记忆性能明显受到所选临界开关温度的影响。换句话说,形状固定和恢复分别取决于形状固定和恢复过程中重结晶和重熔的PE相的比例。在UHPB中,PE链段的结晶诱导伸长和熔融诱导收缩也获得了在该系统恒定载荷下的双向形状记忆效应。而且,UHPB具有出色的可恢复高应变能力;在480%的高应变下,形状恢复率达到96.2%。