Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Synaptic plasticity, metaplasticity and memory effects in hybrid organic–inorganic bismuth-based materials†
Nanoscale ( IF 5.8 ) Pub Date : 2018-12-07 00:00:00 , DOI: 10.1039/c8nr09413f Tomasz Mazur 1, 2, 3 , Piotr Zawal 1, 2, 2, 3, 4 , Konrad Szaciłowski 1, 2, 3
Nanoscale ( IF 5.8 ) Pub Date : 2018-12-07 00:00:00 , DOI: 10.1039/c8nr09413f Tomasz Mazur 1, 2, 3 , Piotr Zawal 1, 2, 2, 3, 4 , Konrad Szaciłowski 1, 2, 3
Affiliation
Since the discovery of memristors, their application in computing systems utilizing multivalued logic and a neuromimetic approach is of great interest. A thin film device made of methylammonium bismuth iodide exhibits a wide variety of neuromorphic effects simultaneously, and is thus able to mimic synaptic behaviour and learning phenomena. Standard learning protocols, such as spike-timing dependent plasticity and spike-rate dependent plasticity might be further modulated via metaplasticity in order to amplify or alter changes in the synaptic weight. Moreover, transfer of information from short-term to long-term memory is observed. These effects show that the diversity of functions of memristive devices can be strongly affected by the pre-treatment of the sample. Modulation of the resistive switching amplitude is of great importance for the application of memristive elements in computational applications, as additional sub-states might be utilized in multi-valued logic systems and metaplasticity and memory consolidation will contribute to the development of more efficient bioinspired computational schemes.
中文翻译:
有机-无机铋混合材料中的突触可塑性,化生可塑性和记忆效应†
自从忆阻器被发现以来,它们在利用多值逻辑和仿神经方法的计算系统中的应用引起了极大的兴趣。由甲基碘化铋铋制成的薄膜器件同时具有多种神经形态效应,因此能够模仿突触行为和学习现象。标准学习协议,如尖峰定时依赖性可塑性和尖峰速率依赖性可塑性可能被进一步调制经由为了增加或改变突触重量的变化而产生的可塑性。此外,观察到信息从短期记忆转移到长期记忆。这些效果表明,忆阻装置功能的多样性会受到样品预处理的强烈影响。电阻性开关幅度的调制对于忆阻元件在计算应用中的应用非常重要,因为在多值逻辑系统中可能会使用其他子状态,而超塑性和内存整合将有助于开发更有效的生物启发式计算方案。
更新日期:2018-12-07
中文翻译:
有机-无机铋混合材料中的突触可塑性,化生可塑性和记忆效应†
自从忆阻器被发现以来,它们在利用多值逻辑和仿神经方法的计算系统中的应用引起了极大的兴趣。由甲基碘化铋铋制成的薄膜器件同时具有多种神经形态效应,因此能够模仿突触行为和学习现象。标准学习协议,如尖峰定时依赖性可塑性和尖峰速率依赖性可塑性可能被进一步调制经由为了增加或改变突触重量的变化而产生的可塑性。此外,观察到信息从短期记忆转移到长期记忆。这些效果表明,忆阻装置功能的多样性会受到样品预处理的强烈影响。电阻性开关幅度的调制对于忆阻元件在计算应用中的应用非常重要,因为在多值逻辑系统中可能会使用其他子状态,而超塑性和内存整合将有助于开发更有效的生物启发式计算方案。