当前位置: X-MOL 学术ACS Appl. Mater. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Photon-Responsive Antibacterial Nanoplatform for Synergistic Photothermal-/Pharmaco-Therapy of Skin Infection
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2018-12-06 00:00:00 , DOI: 10.1021/acsami.8b18146
Lingling Zhang 1, 2 , Yingqian Wang 3 , Jie Wang 3 , Yulan Wang 1, 2 , Aoying Chen 1, 2 , Can Wang 1, 2 , Wenting Mo 1, 2 , Yingxue Li 3 , Quan Yuan 3 , Yufeng Zhang 1, 2
Affiliation  

Abuse of antibiotics and their residues in the environment results in the emergence and prevalence of drug-resistant bacteria and leads to serious health problems. Herein, a photon-controlled antibacterial platform that can efficiently kill drug-resistant bacteria and avoid the generation of new bacterial resistance was designed by encapsulating black phosphorus quantum dots (BPQDs) and pharmaceuticals inside a thermal-sensitive liposome. The antibacterial platform can release pharmaceuticals in a spatial-, temporal-, and dosage-controlled fashion because the BPQDs can delicately generate heat under near-infrared light stimulation to disrupt the liposome. This user-defined delivery of drug can greatly reduce the antibiotic dosage, thus avoiding the indiscriminate use of antibiotics and preventing the generation of superbugs. Moreover, by coupling the photothermal effect with antibiotics, this antibacterial platform achieved a synergistic photothermal-/pharmaco-therapy with significantly improved antibacterial efficiency toward drug-resistant bacteria. The antibacterial platform was further employed to treat antibiotic-resistant bacteria-caused skin abscess and it displayed excellent antibacterial activity in vivo, promising its potential clinical applications. Additionally, the antibacterial mechanism was further investigated. The developed photon-controlled antibacterial platform can open new possibilities for avoiding bacterial resistance and efficiently killing antibiotic-resistant bacteria, making it valuable in fields ranging from antiinfective therapy to precision medicine.

中文翻译:

光子响应性抗菌纳米平台用于皮肤感染的协同光热/药物治疗。

在环境中滥用抗生素及其残留物会导致耐药细菌的出现和流行,并导致严重的健康问题。本文中,通过将黑磷量子点(BPQD)和药物封装在热敏脂质体内,设计了一种可以有效杀死耐药细菌并避免新细菌耐药性产生的光子控制抗菌平台。抗菌平台可以以空间,时间和剂量控制的方式释放药物,因为BPQD可以在近红外光刺激下微妙地产生热量,从而破坏脂质体。这种用户定义的药物输送方式可以大大减少抗生素用量,从而避免了抗生素的随意使用并防止了超级细菌的产生。而且,通过将光热作用与抗生素结合,该抗菌平台实现了协同的光热/药物治疗,显着提高了对耐药菌的抗菌效率。该抗菌平台被进一步用于治疗抗药性细菌引起的皮肤脓肿,并且在体内表现出出色的抗菌活性,有望用于潜在的临床应用。此外,进一步研究了抗菌机理。先进的光子控制抗菌平台可为避免细菌耐药性并有效杀死抗生素耐药性细菌开辟新的可能性,使其在从抗感染治疗到精密医学等各个领域都具有重要价值。该抗菌平台实现了协同的光热/药物治疗,显着提高了对耐药细菌的抗菌效率。该抗菌平台被进一步用于治疗抗药性细菌引起的皮肤脓肿,并且在体内表现出出色的抗菌活性,有望用于潜在的临床应用。此外,进一步研究了抗菌机理。先进的光子控制抗菌平台可为避免细菌耐药性并有效杀死抗生素耐药性细菌开辟新的可能性,使其在从抗感染治疗到精密医学等各个领域都具有重要价值。该抗菌平台实现了协同的光热/药物治疗,显着提高了对耐药细菌的抗菌效率。该抗菌平台被进一步用于治疗抗药性细菌引起的皮肤脓肿,并且在体内表现出出色的抗菌活性,有望用于潜在的临床应用。此外,进一步研究了抗菌机理。先进的光子控制抗菌平台可为避免细菌耐药性并有效杀死抗生素耐药性细菌开辟新的可能性,使其在从抗感染治疗到精密医学等各个领域都具有重要价值。该抗菌平台被进一步用于治疗抗药性细菌引起的皮肤脓肿,并且在体内表现出出色的抗菌活性,有望用于潜在的临床应用。此外,进一步研究了抗菌机理。先进的光子控制抗菌平台可为避免细菌耐药性并有效杀死抗生素耐药性细菌开辟新的可能性,使其在从抗感染治疗到精密医学等各个领域都具有重要价值。该抗菌平台被进一步用于治疗抗生素耐药性细菌引起的皮肤脓肿,并在体内表现出出色的抗菌活性,有望为其潜在的临床应用提供前景。此外,进一步研究了抗菌机理。先进的光子控制抗菌平台可为避免细菌耐药性并有效杀死抗生素耐药性细菌开辟新的可能性,使其在从抗感染治疗到精密医学等各个领域都具有重要价值。
更新日期:2018-12-06
down
wechat
bug