当前位置:
X-MOL 学术
›
Nano Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Hofstadter Butterfly and Many-Body Effects in Epitaxial Graphene Superlattice
Nano Letters ( IF 9.6 ) Pub Date : 2016-03-09 00:00:00 , DOI: 10.1021/acs.nanolett.5b05161 Wei Yang 1, 2 , Xiaobo Lu 1 , Guorui Chen 3 , Shuang Wu 1 , Guibai Xie 1 , Meng Cheng 1 , Duoming Wang 1 , Rong Yang 1 , Dongxia Shi 1 , Kenji Watanabe 4 , Takashi Taniguchi 4 , Christophe Voisin 2 , Bernard Plaçais 2 , Yuanbo Zhang 3 , Guangyu Zhang 1
Nano Letters ( IF 9.6 ) Pub Date : 2016-03-09 00:00:00 , DOI: 10.1021/acs.nanolett.5b05161 Wei Yang 1, 2 , Xiaobo Lu 1 , Guorui Chen 3 , Shuang Wu 1 , Guibai Xie 1 , Meng Cheng 1 , Duoming Wang 1 , Rong Yang 1 , Dongxia Shi 1 , Kenji Watanabe 4 , Takashi Taniguchi 4 , Christophe Voisin 2 , Bernard Plaçais 2 , Yuanbo Zhang 3 , Guangyu Zhang 1
Affiliation
Graphene placed on hexagonal boron nitride (h-BN) has received a wide range of interest due to the improved electrical performance and rich physics from the interface, especially the emergence of superlattice Dirac points as well as Hofstadter butterfly in high magnetic field. Instead of transferring graphene onto h-BN, epitaxial growth of graphene directly on a single-crystal h-BN provides an alternative and promising way to study these interesting superlattice effects due to their precise lattice alignment. Here we report an electrical transport study on epitaxial graphene superlattice on h-BN with a period of ∼15.6 nm. The epitaxial graphene superlattice is clean, intrinsic, and of high quality with a carrier mobility of ∼27 000 cm2 V–1 s–1, which enables the observation of Hofstadter butterfly features originated from the superlattice at a magnetic field as low as 6.4 T. A metal–insulator transition and magnetic field dependent Fermi velocity were also observed, suggesting prominent electron–electron interaction-induced many-body effects.
中文翻译:
霍夫施塔特蝴蝶与外延石墨烯超晶格中的多体效应
石墨烯置于六方氮化硼(h-BN)上,由于其界面的改进的电性能和丰富的物理特性,引起了广泛的关注,特别是在高磁场中出现了超晶格狄拉克点和霍夫施塔特蝴蝶。石墨烯直接在单晶h-BN上外延生长,而不是将石墨烯转移到h-BN上,由于其精确的晶格排列,为研究这些有趣的超晶格效应提供了另一种有希望的方法。在这里,我们报告了在h-BN上外延石墨烯超晶格的电传输研究,其周期约为15.6 nm。外延石墨烯超晶格是纯净的,固有的,高质量的,载流子迁移率为〜27 000 cm 2 V –1 s –1,它可以观察到在低至6.4 T的磁场下源自超晶格的Hofstadter蝴蝶特征。还观察到金属-绝缘体跃迁和磁场相关的费米速度,这表明了显着的电子-电子相互作用诱导的多体效应。
更新日期:2016-03-09
中文翻译:
霍夫施塔特蝴蝶与外延石墨烯超晶格中的多体效应
石墨烯置于六方氮化硼(h-BN)上,由于其界面的改进的电性能和丰富的物理特性,引起了广泛的关注,特别是在高磁场中出现了超晶格狄拉克点和霍夫施塔特蝴蝶。石墨烯直接在单晶h-BN上外延生长,而不是将石墨烯转移到h-BN上,由于其精确的晶格排列,为研究这些有趣的超晶格效应提供了另一种有希望的方法。在这里,我们报告了在h-BN上外延石墨烯超晶格的电传输研究,其周期约为15.6 nm。外延石墨烯超晶格是纯净的,固有的,高质量的,载流子迁移率为〜27 000 cm 2 V –1 s –1,它可以观察到在低至6.4 T的磁场下源自超晶格的Hofstadter蝴蝶特征。还观察到金属-绝缘体跃迁和磁场相关的费米速度,这表明了显着的电子-电子相互作用诱导的多体效应。