当前位置:
X-MOL 学术
›
Adv. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Ion Beam Defect Engineering on ReS2/Si Photocathode with Significantly Enhanced Hydrogen Evolution Reaction
Advanced Materials Interfaces ( IF 4.3 ) Pub Date : 2018-12-05 , DOI: 10.1002/admi.201801663 Wentian Huang 1 , Qingwei Zhou 1, 2 , Shaoqiang Su 1 , Jing Li 1 , Xubin Lu 1 , Xingsen Gao 1 , Xin Wang 1, 3 , Mingliang Jin 1, 3 , Guofu Zhou 1, 3 , Zhang Zhang 1, 3 , Junming Liu 1, 2
Advanced Materials Interfaces ( IF 4.3 ) Pub Date : 2018-12-05 , DOI: 10.1002/admi.201801663 Wentian Huang 1 , Qingwei Zhou 1, 2 , Shaoqiang Su 1 , Jing Li 1 , Xubin Lu 1 , Xingsen Gao 1 , Xin Wang 1, 3 , Mingliang Jin 1, 3 , Guofu Zhou 1, 3 , Zhang Zhang 1, 3 , Junming Liu 1, 2
Affiliation
Loading 2D layered transition metal dichalcogenides (TMDs) on p‐type silicon photocathode is suitable for hydrogen production in solar‐driven photoelectrochemical (PEC) water splitting. Similarly, various nanostructured TMDs exposing more active sites are widely explored for improving the PEC performances of composite photoelectrodes. Here, defect engineering using a controllable argon ion beam bombardment is presented on ReS2/Si photocathode. The atomic vacancy defects are introduced on the 2D ReS2 to realize high‐density active sites, which significantly enhance the solar‐driven hydrogen evolution reaction performance of ReS2/Si photocathode. The highest photocurrent density of 18.5 mA cm−2 (at 0 V vs reversible hydrogen electrode) is achieved, under a simulated sun irradiation.
中文翻译:
ReS2 / Si光电阴极上离子束缺陷工程的产氢反应显着增强
在p型硅光电阴极上加载2D层状过渡金属二卤化金属(TMD)适用于太阳能驱动的光电化学(PEC)水分解中的制氢。同样,为了提高复合光电极的PEC性能,人们广泛探索了暴露出更多活性位点的各种纳米结构TMD。在此,在ReS 2 / Si光电阴极上介绍了使用可控氩离子束轰击进行的缺陷工程。在2D ReS 2上引入原子空位缺陷以实现高密度的活性位点,从而显着增强了ReS 2 / Si光电阴极的太阳驱动氢析出反应性能。最高光电流密度为18.5 mA cm -2 (在0 V vs可逆氢电极下),是在模拟的阳光照射下实现的。
更新日期:2018-12-05
中文翻译:
ReS2 / Si光电阴极上离子束缺陷工程的产氢反应显着增强
在p型硅光电阴极上加载2D层状过渡金属二卤化金属(TMD)适用于太阳能驱动的光电化学(PEC)水分解中的制氢。同样,为了提高复合光电极的PEC性能,人们广泛探索了暴露出更多活性位点的各种纳米结构TMD。在此,在ReS 2 / Si光电阴极上介绍了使用可控氩离子束轰击进行的缺陷工程。在2D ReS 2上引入原子空位缺陷以实现高密度的活性位点,从而显着增强了ReS 2 / Si光电阴极的太阳驱动氢析出反应性能。最高光电流密度为18.5 mA cm -2 (在0 V vs可逆氢电极下),是在模拟的阳光照射下实现的。