当前位置: X-MOL 学术J. Chem. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Intermolecular electron transfer from intramolecular excitation and coherent acoustic phonon generation in a hydrogen-bonded charge-transfer solid
The Journal of Chemical Physics ( IF 3.1 ) Pub Date : 2016-03-09 14:45:02 , DOI: 10.1063/1.4943047
Aaron S. Rury 1 , Shayne Sorenson 1 , Jahan M. Dawlaty 1
Affiliation  

Organic materials that produce coherent lattice phonon excitations in response to external stimuli may provide next generation solutions in a wide range of applications. However, for these materials to lead to functional devices in technology, a full understanding of the possible driving forces of coherent lattice phonon generation must be attained. To facilitate the achievement of this goal, we have undertaken an optical spectroscopic study of an organic charge-transfer material formed from the ubiquitous reduction-oxidation pair hydroquinone and p-benzoquinone. Upon pumping this material, known as quinhydrone, on its intermolecular charge transfer resonance as well as an intramolecular resonance of p-benzoquinone, we find sub-cm−1 oscillations whose dispersion with probe energy resembles that of a coherent acoustic phonon that we argue is coherently excited following changes in the electron density of quinhydrone. Using the dynamical information from these ultrafast pump-probe measurements, we find that the fastest process we can resolve does not change whether we pump quinhydrone at either energy. Electron-phonon coupling from both ultrafast coherent vibrational and steady-state resonance Raman spectroscopies allows us to determine that intramolecular electronic excitation of p-benzoquinone also drives the electron transfer process in quinhydrone. These results demonstrate the wide range of electronic excitations of the parent of molecules found in many functional organic materials that can drive coherent lattice phonon excitations useful for applications in electronics, photonics, and information technology.

中文翻译:

氢键电荷转移固体中分子内激发和相干声子的分子间电子转移

响应外部刺激而产生相干晶格声子激发的有机材料可以为广泛的应用提供下一代解决方案。然而,为了使这些材料成为技术上的功能性器件,必须充分理解相干晶格声子产生的可能驱动力。为了促进这一目标的实现,我们采取了从泛在还原-氧化对苯二酚和形成的有机电荷转移材料的光学光谱研究p醌。通过泵吸这种被称为醌氢醌的材料,在其分子间的电荷转移共振以及对-醌的分子内共振,我们发现亚厘米-1我们认为,随着探针能量的色散与相干声子的色散相似的振荡,是随着对苯二酚电子密度的变化而被相干激发的。使用这些超快泵浦探针测量中的动力学信息,我们发现可以解决的最快过程不会改变是否以任何一种能量泵浦喹hydr酮。来自超快相干振动和稳态共振拉曼光谱的电子-声子耦合使我们能够确定p的分子内电子激发-苯醌也可以驱动醌氢的电子转移过程。这些结果证明了在许多功能性有机材料中发现的多种分子母体的电子激发能驱动相干晶格声子激发,这些激发能用于电子,光子学和信息技术。
更新日期:2016-03-10
down
wechat
bug