当前位置:
X-MOL 学术
›
Microchim. Acta
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Voltammetric aptasensor for sulfadimethoxine using a nanohybrid composed of multifunctional fullerene, reduced graphene oxide and Pt@Au nanoparticles, and based on direct electron transfer to the active site of glucose oxidase
Microchimica Acta ( IF 5.3 ) Pub Date : 2018-12-04 , DOI: 10.1007/s00604-018-3127-5 Huan You , Zhaode Mu , Min Zhao , Jing Zhou , Yongjie Chen , Lijuan Bai
Microchimica Acta ( IF 5.3 ) Pub Date : 2018-12-04 , DOI: 10.1007/s00604-018-3127-5 Huan You , Zhaode Mu , Min Zhao , Jing Zhou , Yongjie Chen , Lijuan Bai
AbstractThis work describes a voltammetric and ultrasensitive aptasensor for sulfadimethoxine (SDM). It is based on signal amplification by making use of a multifunctional fullerene-doped reduced graphene oxide nanohybrid. The nanohybrid was coated with poly(diallyldimethylammonium chloride) to obtain a material (P-C60-rGO) with large specific surface area and a unique adsorption ability for loading it with glucose oxidase (GOx). The coating also facilitates the direct electron transfer between the active site of GOx and the glassy carbon electrode (GCE). The P-C60-rGO were then modified with Pt@Au nanoparticles, and the thiolated SDM-binding aptamer was immobilized on the nanoparticles. On exposure of the modified GCE to a solution containing SDM, it binds to the aptamer. The results were recorded through the signal responses generated from the redox center of GOx (FAD/FADH2) by cyclic voltammetry at a scan rate of 100 mV·s−1 from −0.25 to −0.65 V. Accordingly, The sensor has good specificity and stability, and response is linear in the 10 fg·mL−1 to 50 ng·mL−1 SDM concentration range with a detection limit of 8.7 fg·mL−1. Graphical abstractSchematic presentation of an electrochemical aptasensor for sulfadimethoxine (SDM) using multifunctional fullerene-doped graphene (C60-rGO) nanohybrids for amplification. The limit of detection for SDM is as low as 8.7 fg·mL−1.
中文翻译:
使用由多功能富勒烯、还原氧化石墨烯和 Pt@Au 纳米颗粒组成的纳米杂化物并基于直接电子转移到葡萄糖氧化酶活性位点的磺胺二甲氧嘧啶伏安适体传感器
摘要这项工作描述了一种用于磺胺二甲氧嘧啶 (SDM) 的伏安法和超灵敏适体传感器。它基于通过使用多功能富勒烯掺杂的还原氧化石墨烯纳米杂化物进行信号放大。纳米杂化物用聚(二烯丙基二甲基氯化铵)包被,以获得具有大比表面积和独特的吸附能力的材料(P-C60-rGO),用于加载葡萄糖氧化酶(GOx)。该涂层还促进了 GOx 的活性位点和玻璃碳电极 (GCE) 之间的直接电子转移。然后用 Pt@Au 纳米粒子修饰 P-C60-rGO,并将硫醇化的 SDM 结合适体固定在纳米粒子上。当修饰的 GCE 暴露于含有 SDM 的溶液时,它会与适体结合。通过循环伏安法以 100 mV·s-1 的扫描速率从 -0.25 到 -0.65 V,通过从 GOx (FAD/FADH2) 的氧化还原中心产生的信号响应记录结果。因此,该传感器具有良好的特异性和稳定性,响应在 10 fg·mL-1 至 50 ng·mL-1 SDM 浓度范围内呈线性,检测限为 8.7 fg·mL-1。图解摘要使用多功能富勒烯掺杂石墨烯 (C60-rGO) 纳米杂化物进行放大的磺胺二甲氧嘧啶 (SDM) 电化学适体传感器的示意图。SDM 的检测限低至 8.7 fg·mL-1。响应在 10 fg·mL-1 至 50 ng·mL-1 SDM 浓度范围内呈线性,检测限为 8.7 fg·mL-1。图解摘要使用多功能富勒烯掺杂石墨烯 (C60-rGO) 纳米杂化物进行放大的磺胺二甲氧嘧啶 (SDM) 电化学适体传感器的示意图。SDM 的检测限低至 8.7 fg·mL-1。响应在 10 fg·mL-1 至 50 ng·mL-1 SDM 浓度范围内呈线性,检测限为 8.7 fg·mL-1。图解摘要使用多功能富勒烯掺杂石墨烯 (C60-rGO) 纳米杂化物进行放大的磺胺二甲氧嘧啶 (SDM) 电化学适体传感器的示意图。SDM 的检测限低至 8.7 fg·mL-1。
更新日期:2018-12-04
中文翻译:
使用由多功能富勒烯、还原氧化石墨烯和 Pt@Au 纳米颗粒组成的纳米杂化物并基于直接电子转移到葡萄糖氧化酶活性位点的磺胺二甲氧嘧啶伏安适体传感器
摘要这项工作描述了一种用于磺胺二甲氧嘧啶 (SDM) 的伏安法和超灵敏适体传感器。它基于通过使用多功能富勒烯掺杂的还原氧化石墨烯纳米杂化物进行信号放大。纳米杂化物用聚(二烯丙基二甲基氯化铵)包被,以获得具有大比表面积和独特的吸附能力的材料(P-C60-rGO),用于加载葡萄糖氧化酶(GOx)。该涂层还促进了 GOx 的活性位点和玻璃碳电极 (GCE) 之间的直接电子转移。然后用 Pt@Au 纳米粒子修饰 P-C60-rGO,并将硫醇化的 SDM 结合适体固定在纳米粒子上。当修饰的 GCE 暴露于含有 SDM 的溶液时,它会与适体结合。通过循环伏安法以 100 mV·s-1 的扫描速率从 -0.25 到 -0.65 V,通过从 GOx (FAD/FADH2) 的氧化还原中心产生的信号响应记录结果。因此,该传感器具有良好的特异性和稳定性,响应在 10 fg·mL-1 至 50 ng·mL-1 SDM 浓度范围内呈线性,检测限为 8.7 fg·mL-1。图解摘要使用多功能富勒烯掺杂石墨烯 (C60-rGO) 纳米杂化物进行放大的磺胺二甲氧嘧啶 (SDM) 电化学适体传感器的示意图。SDM 的检测限低至 8.7 fg·mL-1。响应在 10 fg·mL-1 至 50 ng·mL-1 SDM 浓度范围内呈线性,检测限为 8.7 fg·mL-1。图解摘要使用多功能富勒烯掺杂石墨烯 (C60-rGO) 纳米杂化物进行放大的磺胺二甲氧嘧啶 (SDM) 电化学适体传感器的示意图。SDM 的检测限低至 8.7 fg·mL-1。响应在 10 fg·mL-1 至 50 ng·mL-1 SDM 浓度范围内呈线性,检测限为 8.7 fg·mL-1。图解摘要使用多功能富勒烯掺杂石墨烯 (C60-rGO) 纳米杂化物进行放大的磺胺二甲氧嘧啶 (SDM) 电化学适体传感器的示意图。SDM 的检测限低至 8.7 fg·mL-1。