当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Homologous Hierarchical Porous Hollow Carbon Spheres Anode and Bowls Cathode Enabling High-Energy Sodium-Ion Hybrid Capacitors
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2018-12-04 00:00:00 , DOI: 10.1021/acsami.8b16442 Daping Qiu , Ang Gao , Zhenyu Xie , Lun Zheng , Cuihua Kang , Yan Li , Nannan Guo 1 , Min Li , Feng Wang , Ru Yang
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2018-12-04 00:00:00 , DOI: 10.1021/acsami.8b16442 Daping Qiu , Ang Gao , Zhenyu Xie , Lun Zheng , Cuihua Kang , Yan Li , Nannan Guo 1 , Min Li , Feng Wang , Ru Yang
Affiliation
It is a highly expected avenue to construct dual-carbon sodium-ion hybrid capacitors (SIHCs) using hierarchical porous carbon with interconnected pores, high accessible surface area, and disordered carbon frameworks for ameliorating the sluggish kinetics of SIHCs. In this work, a novel dual-carbon SIHCs system with homologous enhanced kinetics hierarchical porous hollow carbon spheres (HPCS) and hierarchical porous hollow carbon bowls (HPCB) as the anode and cathode is constructed for the first time. In a Na half-cell configuration, the HPCS anode synthesized through a facile one-pot in-situ template route demonstrates a superior reversible capacity as well as outstanding rate capability and cycleability, and the HPCB cathode fabricated by chemical activation of HPCS exhibits excellent capacitive behaviors. Thanks to superior properties and structures of the anode and cathode, the constructed novel dual-carbon SIHCs present an exceptionally high energy/power density (128.5 Wh kg–1 and 11.9 kW kg–1), along with a long cycling lifespan with retained morphology. This study on the kinetics of enhanced dual-carbon SIHCs opens a new avenue for optimizing the microstructure of hierarchical porous carbon and constructing new type of high-performance SIHCs systems.
中文翻译:
同源分层多孔碳空心阳极和碗状阴极,可实现高能钠离子混合电容器
使用具有相互连接的孔,高可及表面积和无序碳骨架的分级多孔碳来改善SIHC缓慢动力学的双碳钠离子混合电容器(SIHC)的构建是一个备受期待的途径。在这项工作中,首次构建了具有同源增强动力学的分层多孔空心碳球(HPCS)和分层多孔空心碳碗(HPCB)作为阳极和阴极的新型双碳SIHCs系统。在Na半电池配置中,通过便捷的一锅式原位模板路线合成的HPCS阳极具有出色的可逆容量以及出色的倍率性能和循环能力,并且通过化学活化HPCS制成的HPCB阴极具有出色的电容性行为。–1和11.9 kW kg –1),并具有长循环寿命并保持形态。这项对增强型双碳SIHC动力学的研究为优化分级多孔碳的微观结构和构建新型高性能SIHCs系统开辟了一条新途径。
更新日期:2018-12-04
中文翻译:
同源分层多孔碳空心阳极和碗状阴极,可实现高能钠离子混合电容器
使用具有相互连接的孔,高可及表面积和无序碳骨架的分级多孔碳来改善SIHC缓慢动力学的双碳钠离子混合电容器(SIHC)的构建是一个备受期待的途径。在这项工作中,首次构建了具有同源增强动力学的分层多孔空心碳球(HPCS)和分层多孔空心碳碗(HPCB)作为阳极和阴极的新型双碳SIHCs系统。在Na半电池配置中,通过便捷的一锅式原位模板路线合成的HPCS阳极具有出色的可逆容量以及出色的倍率性能和循环能力,并且通过化学活化HPCS制成的HPCB阴极具有出色的电容性行为。–1和11.9 kW kg –1),并具有长循环寿命并保持形态。这项对增强型双碳SIHC动力学的研究为优化分级多孔碳的微观结构和构建新型高性能SIHCs系统开辟了一条新途径。