当前位置: X-MOL 学术ACS Sustain. Chem. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
MoS2 Nanoflowers as a Gateway for Solar-Driven CO2 Photoreduction
ACS Sustainable Chemistry & Engineering ( IF 7.1 ) Pub Date : 2018-12-03 00:00:00 , DOI: 10.1021/acssuschemeng.8b03168
Anne J. Meier 1, 2 , Anita Garg 3 , Brad Sutter 4 , John N. Kuhn 2 , Venkat R. Bhethanabotla 2
Affiliation  

The layering of transition metal dichalcogenides (TMD) has revealed engineering opportunities for optoelectronics, field emitter, and photocatalysis applications. Precise and controlled intrinsic material property combinations is needed for visible light photocatalysis optimization, which we demonstrate in this work with MoS2 nanoflowers containing abundant edge plane flakes for CO2 photoreduction optimization. This is the first time controlled imperfections and flake thickness through facile chemical vapor deposition (CVD) synthesis were demonstrated on the nanoflowers, revealing the tuning ability of flake edge morphology, nanoflower size, stacked-sheet thickness, optical band gap energy (Eg), and catalytic function. These influences facilitated Eg tuning from 1.38 to 1.83 eV and the manifestation of the 3R phase prompting improvement to the catalytic behavior. The “sweet spot” of higher catalytic activity during photoreduction experiments was found in those with plentiful nanoflower density and thick edge-site abundance. Ample edge sites with dangling bonds and crystal impurities assisted in lowering the Eg to achieve reduced recombination for improved photocatalytic reactions, including those found on what would have been a chemically inert basal plane. The production rates of CO improved 2-fold after a calculated post-treatment reduction step. This reliable CVD technique for nanoflower synthesis paves the way for enhanced understating of synthetic parameters for defect-laden 2D TMD nanoflower structures. This work contributes to the development of efficient and stable photocatalytic materials for CO2 conversion from abundant elements, at levels suitable for Mars exploration.

中文翻译:

MoS 2纳米花作为太阳能驱动的CO 2光还原的门户

过渡金属二硫化碳(TMD)的分层为光电子学,场发射器和光催化应用揭示了工程学机会。精确和可控的固有材料属性组合对于可见光光催化优化是必需的,我们在这项工作中演示了MoS 2纳米花,其中包含丰富的边缘平面薄片以进行CO 2光还原优化。这是首次在纳米花上证明了通过便捷的化学气相沉积(CVD)合成控制的瑕疵和薄片厚度,揭示了薄片边缘形态,纳米花大小,堆叠片材厚度,光学带隙能量(E g)和催化功能。这些影响促进了E g从1.38 eV调节到1.83 eV,并且3R相的出现促进了催化性能的改善。在具有大量纳米花密度和浓厚边缘位点丰度的植物中发现了在光还原实验中具有较高催化活性的“最佳点”。具有悬空键和晶体杂质的大量边缘部位有助于降低E g以实现减少的重组以改善光催化反应,包括那些在化学惰性基础平面上发现的反应。经过计算的后处理减少步骤后,CO的生产率提高了2倍。这种用于纳米花合成的可靠CVD技术为增强含缺陷的2D TMD纳米花结构的合成参数的低估铺平了道路。这项工作有助于开发有效和稳定的光催化材料,以适合火星探测的水平从丰富的元素转化为CO 2
更新日期:2018-12-03
down
wechat
bug