当前位置:
X-MOL 学术
›
Adv. Energy Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
In Situ Encapsulation of Iron Complex Nanoparticles into Biomass‐Derived Heteroatom‐Enriched Carbon Nanotubes for High‐Performance Supercapacitors
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2018-12-03 , DOI: 10.1002/aenm.201803221 Jingjing Zhang 1 , Huaping Zhao 2 , Jun Li 1 , Huile Jin 1 , Xiaochun Yu 1 , Yong Lei 2 , Shun Wang 1
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2018-12-03 , DOI: 10.1002/aenm.201803221 Jingjing Zhang 1 , Huaping Zhao 2 , Jun Li 1 , Huile Jin 1 , Xiaochun Yu 1 , Yong Lei 2 , Shun Wang 1
Affiliation
The capacitive performance of carbon materials could be enhanced by means of increasing the number of active sites, the surface area, and the porosity as well as through incorporating heteroatoms into the carbon framework. However, the charge storage through electric double‐layer mechanism results in limited increase in capacitance of modified carbon materials. Herein, a simple and straightforward strategy is introduced for in situ synthesizing iron complex (FeX, which X includes O, C, and P) nanoparticles encapsulated into biomass‐derived N, P‐codoped carbon nanotubes (NPCNTs), using a natural resource, egg yolk, as heteroatom‐enriched carbon sources and potassium ferricyanide as the precursor for iron complex. Compared with heteroatom‐enriched carbon nanomaterials derived from the carbonization of egg yolk, the synergetic function of the heteroatom doping, the incorporation of FeX nanoparticles, and the unique structural characteristics endows the as‐prepared sample with largely improved electrochemical performance. As expected, FeX@NPCNTs hybrid nanomaterials exhibit superior capacitive performance, including high specific capacitance, impressive rate performance, and excellent cycle stability. Using the as‐prepared FeX@NPCNTs hybrid nanomaterials as electroactive materials, a symmetric supercapacitor with high capacity and a long‐term cyclability is finally demonstrated (more than 99% capacitance retention after 50 000 cycles at a current density of 10 A g−1).
中文翻译:
将铁络合物纳米颗粒原位封装到生物质衍生的富含杂原子的高性能碳纳米管中,以用于高性能超级电容器
碳材料的电容性能可以通过增加活性位点的数量,表面积和孔隙率以及将杂原子掺入碳骨架中来增强。但是,通过双电层机制进行的电荷存储导致改性碳材料的电容增加有限。本文介绍了一种简单明了的策略,可以利用自然资源原位合成包裹在生物质衍生的N,P掺杂的碳纳米管(NPCNT)中的铁配合物(FeX,其中X包含O,C和P)纳米颗粒,蛋黄是富含杂原子的碳源,铁氰化钾是铁络合物的前体。与源自蛋黄碳化的富含杂原子的碳纳米材料相比,杂原子掺杂的协同功能,FeX纳米粒子的掺入以及独特的结构特征使所制备的样品具有大大提高的电化学性能。不出所料,FeX @ NPCNTs杂化纳米材料具有出色的电容性能,包括高比电容,令人印象深刻的倍率性能和出色的循环稳定性。使用制备的FeX @ NPCNTs杂化纳米材料作为电活性材料,最终证明了具有高容量和长期可循环性的对称超级电容器(在10 A g的电流密度下进行50 000次循环后,电容保持率超过99%)FeX @ NPCNTs杂化纳米材料具有出色的电容性能,包括高比电容,令人印象深刻的倍率性能和出色的循环稳定性。使用制备的FeX @ NPCNTs杂化纳米材料作为电活性材料,最终证明了具有高容量和长期可循环性的对称超级电容器(在10 A g的电流密度下进行50 000次循环后,电容保持率超过99%)FeX @ NPCNTs杂化纳米材料具有出色的电容性能,包括高比电容,令人印象深刻的倍率性能和出色的循环稳定性。使用制备的FeX @ NPCNTs杂化纳米材料作为电活性材料,最终证明了具有高容量和长期可循环性的对称超级电容器(在10 A g的电流密度下进行500000次循环后,电容保持率超过99%)-1)。
更新日期:2018-12-03
中文翻译:
将铁络合物纳米颗粒原位封装到生物质衍生的富含杂原子的高性能碳纳米管中,以用于高性能超级电容器
碳材料的电容性能可以通过增加活性位点的数量,表面积和孔隙率以及将杂原子掺入碳骨架中来增强。但是,通过双电层机制进行的电荷存储导致改性碳材料的电容增加有限。本文介绍了一种简单明了的策略,可以利用自然资源原位合成包裹在生物质衍生的N,P掺杂的碳纳米管(NPCNT)中的铁配合物(FeX,其中X包含O,C和P)纳米颗粒,蛋黄是富含杂原子的碳源,铁氰化钾是铁络合物的前体。与源自蛋黄碳化的富含杂原子的碳纳米材料相比,杂原子掺杂的协同功能,FeX纳米粒子的掺入以及独特的结构特征使所制备的样品具有大大提高的电化学性能。不出所料,FeX @ NPCNTs杂化纳米材料具有出色的电容性能,包括高比电容,令人印象深刻的倍率性能和出色的循环稳定性。使用制备的FeX @ NPCNTs杂化纳米材料作为电活性材料,最终证明了具有高容量和长期可循环性的对称超级电容器(在10 A g的电流密度下进行50 000次循环后,电容保持率超过99%)FeX @ NPCNTs杂化纳米材料具有出色的电容性能,包括高比电容,令人印象深刻的倍率性能和出色的循环稳定性。使用制备的FeX @ NPCNTs杂化纳米材料作为电活性材料,最终证明了具有高容量和长期可循环性的对称超级电容器(在10 A g的电流密度下进行50 000次循环后,电容保持率超过99%)FeX @ NPCNTs杂化纳米材料具有出色的电容性能,包括高比电容,令人印象深刻的倍率性能和出色的循环稳定性。使用制备的FeX @ NPCNTs杂化纳米材料作为电活性材料,最终证明了具有高容量和长期可循环性的对称超级电容器(在10 A g的电流密度下进行500000次循环后,电容保持率超过99%)-1)。