当前位置: X-MOL 学术Adv. Electron. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Large‐Area All‐Printed Temperature Sensing Surfaces Using Novel Composite Thermistor Materials
Advanced Electronic Materials ( IF 5.3 ) Pub Date : 2018-12-03 , DOI: 10.1002/aelm.201800605
Dimitra Katerinopoulou 1, 2, 3 , Peter Zalar 1 , Jorgen Sweelssen 1 , George Kiriakidis 2, 3 , Corné Rentrop 1 , Pim Groen 1, 4 , Gerwin H. Gelinck 1, 5 , Jeroen van den Brand 1, 6 , Edsger C. P. Smits 1
Affiliation  

Surfaces which can accurately distinguish spatial and temporal changes in temperature are critical for not only flow sensors, microbolometers, process control, but also future applications like electronic skins and soft robotics. Realizing such surfaces requires the deposition of thousands of thermal sensors over large areas, a task ideally suited for printing technologies. Negative temperature coefficient (NTC) ceramics represent the industry standard in temperature sensing due to their high thermal coefficient and excellent stability. A drawback is their complex and high temperature fabrication process and high stiffness, prohibiting their monolithic integration in large area or flexible applications. As a remedy, a printable NTC composite that combines a rapid and scalable all‐printed fabrication process with performances that are on par with conventional NTC ceramics is demonstrated. The composite consists of micrometer‐sized manganese spinel oxide particles dispersed in a benzocyclobutene matrix. The sensor has a B coefficient of 3500 K, with a 4.0% change in resistance at 25 °C, comparable to bulk ceramics. The selected polymer binder yields a composite exhibiting less than a 1 °C change in resistance to changes in humidity. The sensor's scalability is validated by demonstration of a A4‐sized temperature sensing sheet consisting of over 400 sensors.

中文翻译:

使用新型复合热敏电阻材料的大面积全印刷温度感测表面

能够精确地区分温度和时间变化的表面不仅对于流量传感器,微辐射热计,过程控制,而且对于诸如电子皮肤和软机器人等未来应用都是至关重要的。要实现这样的表面,需要在大面积上放置数千个热传感器,这是非常适合打印技术的任务。负温度系数(NTC)陶瓷因其高的热系数和出色的稳定性而代表了温度传感的行业标准。缺点是它们复杂且高温的制造过程和高刚度,从而阻碍了它们在大面积或柔性应用中的整体集成。作为补救措施,展示了一种可打印的NTC复合材料,该复合材料结合了快速,可扩展的全印刷制造工艺以及与传统NTC陶瓷相媲美的性能。该复合材料由微米级的氧化锰尖晶石颗粒组成,分散在苯并环丁烯基质中。该传感器的B系数为3500 K,在25°C下的电阻变化为4.0%,可与散装陶瓷媲美。所选的聚合物粘合剂可制得一种复合材料,该复合材料的耐湿性变化小于1°C。通过展示由400多个传感器组成的A4尺寸的温度感应片,验证了该传感器的可扩展性。在25°C下的电阻变化为4.0%,可与散装陶瓷媲美。所选的聚合物粘合剂可制得一种复合材料,该复合材料的耐湿性变化小于1°C。通过展示由400多个传感器组成的A4尺寸的温度感应片,可以验证该传感器的可扩展性。在25°C下的电阻变化为4.0%,可与散装陶瓷媲美。所选的聚合物粘合剂可制得一种复合材料,该复合材料的耐湿性变化小于1°C。通过展示由400多个传感器组成的A4尺寸的温度感应片,验证了该传感器的可扩展性。
更新日期:2018-12-03
down
wechat
bug