当前位置:
X-MOL 学术
›
ACS Sustain. Chem. Eng.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Potential of Crystalline and Amorphous Ferric Oxides for Biostimulation of Anaerobic Digestion
ACS Sustainable Chemistry & Engineering ( IF 7.1 ) Pub Date : 2018-11-30 00:00:00 , DOI: 10.1021/acssuschemeng.8b04267 Mingwei Wang 1 , Zhiqiang Zhao 1 , Junfeng Niu 2 , Yaobin Zhang 1
ACS Sustainable Chemistry & Engineering ( IF 7.1 ) Pub Date : 2018-11-30 00:00:00 , DOI: 10.1021/acssuschemeng.8b04267 Mingwei Wang 1 , Zhiqiang Zhao 1 , Junfeng Niu 2 , Yaobin Zhang 1
Affiliation
Iron oxides have been widely investigated to accelerate the conversion of organic wastes to methane. However, the potential mechanism involved with different types of iron oxides is a controversial topic. In this study, crystalline Fe2O3 and amorphous Fe (OH)3 were respectively supplemented to explore the effects of the crystal form of Fe(III) on anaerobic digestion. The results showed that the addition of Fe2O3 and Fe(OH)3 both significantly enhanced COD removal and biomethanation compared with the control. The reason was related to that the supplement of Fe(OH)3 induced an efficient microbial dissimilatory iron reduction to enhance the decomposition of complex organics into simples. Consistently, 28.3% of Fe(OH)3 dosed at the initial stage were reduced into Fe(II), while no obvious iron reduction was observed with the Fe2O3 supplement. Interestingly, Fe2O3 significantly stimulated the secretion of protein and humic acid-like substances in EPS, leading to an electron-transfer capacity higher than that for Fe(OH)3 and control reactors, which seemed to be an important reason for the improved anaerobic performance. The gene function prediction also showed a different degree of expression of functional genes involved in amino-acid, polysaccharides, and inorganic ion transport and metabolism in the presence of Fe2O3 and Fe(OH)3. This study helped to give a more comprehensive insight for the mechanisms of ferric oxides on the improvement of anaerobic digestion.
中文翻译:
晶体和非晶态三氧化二铁对厌氧消化生物刺激的潜力
氧化铁已被广泛研究以加速有机废物向甲烷的转化。然而,涉及不同类型的氧化铁的潜在机制是一个有争议的话题。在这项研究中,分别添加了结晶Fe 2 O 3和非晶态Fe(OH)3来研究Fe(III)晶型对厌氧消化的影响。结果表明,与对照相比,添加Fe 2 O 3和Fe(OH)3均显着增强了COD的去除和生物甲烷化。原因与补充Fe(OH)3有关诱导有效的微生物异化铁还原,以增强复杂的有机物分解成简单的有机物。一致地,在初始阶段将28.3%的Fe(OH)3还原为Fe(II),而使用Fe 2 O 3补充剂则未观察到明显的铁还原。有趣的是,Fe 2 O 3显着刺激EPS中蛋白质和腐殖酸样物质的分泌,从而导致电子传递能力高于Fe(OH)3和控制反应堆,这似乎是改善厌氧性能的重要原因。基因功能预测还表明,在存在Fe 2 O 3和Fe(OH)3的情况下,涉及氨基酸,多糖以及无机离子转运和代谢的功能基因的表达程度不同。这项研究有助于更全面地了解氧化铁改善厌氧消化的机理。
更新日期:2018-11-30
中文翻译:
晶体和非晶态三氧化二铁对厌氧消化生物刺激的潜力
氧化铁已被广泛研究以加速有机废物向甲烷的转化。然而,涉及不同类型的氧化铁的潜在机制是一个有争议的话题。在这项研究中,分别添加了结晶Fe 2 O 3和非晶态Fe(OH)3来研究Fe(III)晶型对厌氧消化的影响。结果表明,与对照相比,添加Fe 2 O 3和Fe(OH)3均显着增强了COD的去除和生物甲烷化。原因与补充Fe(OH)3有关诱导有效的微生物异化铁还原,以增强复杂的有机物分解成简单的有机物。一致地,在初始阶段将28.3%的Fe(OH)3还原为Fe(II),而使用Fe 2 O 3补充剂则未观察到明显的铁还原。有趣的是,Fe 2 O 3显着刺激EPS中蛋白质和腐殖酸样物质的分泌,从而导致电子传递能力高于Fe(OH)3和控制反应堆,这似乎是改善厌氧性能的重要原因。基因功能预测还表明,在存在Fe 2 O 3和Fe(OH)3的情况下,涉及氨基酸,多糖以及无机离子转运和代谢的功能基因的表达程度不同。这项研究有助于更全面地了解氧化铁改善厌氧消化的机理。