当前位置:
X-MOL 学术
›
Chem. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Topological Quantum Materials for Realizing Majorana Quasiparticles
Chemistry of Materials ( IF 7.2 ) Pub Date : 2018-11-30 00:00:00 , DOI: 10.1021/acs.chemmater.8b04383 Stephen R. Lee 1 , Peter A. Sharma 1 , Ana L. Lima-Sharma 1 , Wei Pan 2 , Tina M. Nenoff 1
Chemistry of Materials ( IF 7.2 ) Pub Date : 2018-11-30 00:00:00 , DOI: 10.1021/acs.chemmater.8b04383 Stephen R. Lee 1 , Peter A. Sharma 1 , Ana L. Lima-Sharma 1 , Wei Pan 2 , Tina M. Nenoff 1
Affiliation
In the past decade, basic physics, chemistry, and materials science research on topological quantum materials—and their potential use to implement reliable quantum computers—has rapidly expanded to become a major endeavor. A pivotal goal of this research has been to realize materials hosting Majorana quasiparticles, thereby making topological quantum computing a technological reality. While this goal remains elusive, recent data-mining studies, performed using topological quantum chemistry methodologies, have identified thousands of potential topological materials—some, and perhaps many, with potential for hosting Majoranas. We write this Review for advanced materials researchers who are interested in joining this expanding search, but who are not currently specialists in topology. The first half of the Review addresses, in readily understood terms, three main areas associated with topological sciences: (1) a description of topological quantum materials and how they enable quantum computing; (2) an explanation of Majorana quasiparticles, the important topologically endowed properties, and how it arises quantum mechanically; and (3) a description of the basic classes of topological materials where Majoranas might be found. The second half of the Review details selected materials systems where intense research efforts are underway to demonstrate nontrivial topological phenomena in the search for Majoranas. Specific materials reviewed include the groups II–V semiconductors (Cd3As2), the layered chalcogenides (MX2, ZrTe5), and the rare-earth pyrochlore iridates (A2Ir2O7, A = Eu, Pr). In each case, we describe crystallographic structures, bulk phase diagrams, materials synthesis methods (bulk, thin film, and/or nanowire forms), methods used to characterize topological phenomena, and potential evidence for the existence of Majorana quasiparticles.
中文翻译:
实现Majorana准粒子的拓扑量子材料
在过去的十年中,有关拓扑量子材料的基础物理学,化学和材料科学研究及其在实现可靠的量子计算机方面的潜在用途,已迅速扩展为一项主要工作。这项研究的关键目标是实现承载马约拉纳准粒子的材料,从而使拓扑量子计算成为一种技术现实。尽管这个目标仍然遥不可及,但最近使用拓扑量子化学方法进行的数据挖掘研究已经发现了数千个潜在的拓扑材料,其中一些甚至许多具有容纳Majoranas的潜力。我们为有兴趣加入此扩展搜索但目前还不是拓扑专家的高级材料研究人员撰写此评论。回顾的上半部分以易于理解的术语论述了与拓扑科学相关的三个主要领域:(1)对拓扑量子材料及其如何实现量子计算的描述;(2)对马约拉纳准粒子的解释,重要的拓扑赋予的性质以及其如何机械地量子化的解释;(3)描述可能发现马约拉那群岛的拓扑材料的基本类别。该评论的后半部分详细介绍了一些材料系统,这些材料系统正在进行大量研究,以证明在寻找马约拉纳斯时非平凡的拓扑现象。审查的特定材料包括II–V族半导体(Cd3 As 2),层状硫族化物(MX 2,ZrTe 5)和稀土烧绿石铱酸盐(A 2 Ir 2 O 7,A = Eu,Pr)。在每种情况下,我们都将描述晶体结构,体相图,材料合成方法(本体,薄膜和/或纳米线形式),用于表征拓扑现象的方法以及存在马约拉纳准粒子的潜在证据。
更新日期:2018-11-30
中文翻译:
实现Majorana准粒子的拓扑量子材料
在过去的十年中,有关拓扑量子材料的基础物理学,化学和材料科学研究及其在实现可靠的量子计算机方面的潜在用途,已迅速扩展为一项主要工作。这项研究的关键目标是实现承载马约拉纳准粒子的材料,从而使拓扑量子计算成为一种技术现实。尽管这个目标仍然遥不可及,但最近使用拓扑量子化学方法进行的数据挖掘研究已经发现了数千个潜在的拓扑材料,其中一些甚至许多具有容纳Majoranas的潜力。我们为有兴趣加入此扩展搜索但目前还不是拓扑专家的高级材料研究人员撰写此评论。回顾的上半部分以易于理解的术语论述了与拓扑科学相关的三个主要领域:(1)对拓扑量子材料及其如何实现量子计算的描述;(2)对马约拉纳准粒子的解释,重要的拓扑赋予的性质以及其如何机械地量子化的解释;(3)描述可能发现马约拉那群岛的拓扑材料的基本类别。该评论的后半部分详细介绍了一些材料系统,这些材料系统正在进行大量研究,以证明在寻找马约拉纳斯时非平凡的拓扑现象。审查的特定材料包括II–V族半导体(Cd3 As 2),层状硫族化物(MX 2,ZrTe 5)和稀土烧绿石铱酸盐(A 2 Ir 2 O 7,A = Eu,Pr)。在每种情况下,我们都将描述晶体结构,体相图,材料合成方法(本体,薄膜和/或纳米线形式),用于表征拓扑现象的方法以及存在马约拉纳准粒子的潜在证据。