当前位置:
X-MOL 学术
›
J. Mater. Chem. A
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Ultrafine bimetallic Pt–Ni nanoparticles immobilized on 3-dimensional N-doped graphene networks: a highly efficient catalyst for dehydrogenation of hydrous hydrazine†
Journal of Materials Chemistry A ( IF 10.7 ) Pub Date : 2018-11-23 00:00:00 , DOI: 10.1039/c8ta09003c Amit Kumar 1, 2, 3, 4 , Xinchun Yang 1, 2, 3, 4 , Qiang Xu 1, 2, 3, 4, 5
Journal of Materials Chemistry A ( IF 10.7 ) Pub Date : 2018-11-23 00:00:00 , DOI: 10.1039/c8ta09003c Amit Kumar 1, 2, 3, 4 , Xinchun Yang 1, 2, 3, 4 , Qiang Xu 1, 2, 3, 4, 5
Affiliation
Ultrafine and uniformly dispersed bimetallic Pt–Ni nanoparticles (NPs) have been immobilized on novel 3-dimensional N-doped graphene networks (NGNs) by a facile wet chemical reduction method. NGNs were obtained by 3-dimensional assembly of graphene layers with simultaneous nitrogen doping via crosslinking of graphene oxide (GO) with melamine formaldehyde resin (MFR) under hydrothermal conditions followed by carbonization. Surprisingly, NGN-supported Pt0.5Ni0.5 NPs exhibit extremely high catalytic activity for the dehydrogenation of hydrazine hydrate, achieving 100% H2 selectivity with the highest turnover frequency (TOF) of 943 h−1 at 303 K reported thus far. The small size and synergistic effects are responsible for the superior catalytic activity.
中文翻译:
固定在3维N掺杂石墨烯网络上的超细双金属Pt-Ni纳米颗粒:一种用于含水肼脱氢的高效催化剂†
超细且均匀分散的双金属Pt-Ni纳米颗粒(NPs)已通过一种简便的湿法化学还原方法固定在新型3维N掺杂石墨烯网络(NGNs)上。通过在水热条件下通过氧化石墨烯(GO)与三聚氰胺甲醛树脂(MFR)的交联同时进行氮掺杂,将石墨烯层进行3维组装,同时进行氮掺杂,可以得到NGN 。出人意料的是,NGN负载的Pt 0.5 Ni 0.5 NPs对水合肼的脱氢表现出极高的催化活性,实现了100%H 2选择性,最高的周转频率(TOF)为943 h -1迄今报道的303K。较小的尺寸和协同作用导致了优异的催化活性。
更新日期:2018-11-23
中文翻译:
固定在3维N掺杂石墨烯网络上的超细双金属Pt-Ni纳米颗粒:一种用于含水肼脱氢的高效催化剂†
超细且均匀分散的双金属Pt-Ni纳米颗粒(NPs)已通过一种简便的湿法化学还原方法固定在新型3维N掺杂石墨烯网络(NGNs)上。通过在水热条件下通过氧化石墨烯(GO)与三聚氰胺甲醛树脂(MFR)的交联同时进行氮掺杂,将石墨烯层进行3维组装,同时进行氮掺杂,可以得到NGN 。出人意料的是,NGN负载的Pt 0.5 Ni 0.5 NPs对水合肼的脱氢表现出极高的催化活性,实现了100%H 2选择性,最高的周转频率(TOF)为943 h -1迄今报道的303K。较小的尺寸和协同作用导致了优异的催化活性。