当前位置: X-MOL 学术Sci. Rep. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Deep transfer learning-based hologram classification for molecular diagnostics.
Scientific Reports ( IF 3.8 ) Pub Date : 2018-11-19 , DOI: 10.1038/s41598-018-35274-x
Sung-Jin Kim 1 , Chuangqi Wang 1 , Bing Zhao 2 , Hyungsoon Im 3, 4 , Jouha Min 3, 4 , Hee June Choi 1 , Joseph Tadros 1 , Nu Ri Choi 1 , Cesar M Castro 3 , Ralph Weissleder 3, 4, 5 , Hakho Lee 3, 4 , Kwonmoo Lee 1, 6
Affiliation  

Lens-free digital in-line holography (LDIH) is a promising microscopic tool that overcomes several drawbacks (e.g., limited field of view) of traditional lens-based microcopy. However, extensive computation is required to reconstruct object images from the complex diffraction patterns produced by LDIH. This limits LDIH utility for point-of-care applications, particularly in resource limited settings. We describe a deep transfer learning (DTL) based approach to process LDIH images in the context of cellular analyses. Specifically, we captured holograms of cells labeled with molecular-specific microbeads and trained neural networks to classify these holograms without reconstruction. Using raw holograms as input, the trained networks were able to classify individual cells according to the number of cell-bound microbeads. The DTL-based approach including a VGG19 pretrained network showed robust performance with experimental data. Combined with the developed DTL approach, LDIH could be realized as a low-cost, portable tool for point-of-care diagnostics.

中文翻译:


用于分子诊断的基于深度迁移学习的全息图分类。



无透镜数字在线全息术 (LDIH) 是一种很有前途的显微工具,它克服了传统基于透镜的显微复制的几个缺点(例如,视野有限)。然而,需要大量的计算才能从 LDIH 产生的复杂衍射图谱中重建物体图像。这限制了 LDIH 对床旁应用的效用,尤其是在资源有限的环境中。我们描述了一种基于深度迁移学习 (DTL) 的方法,用于在细胞分析的背景下处理 LDIH 图像。具体来说,我们捕获了用分子特异性微珠标记的细胞的全息图,并训练了神经网络来对这些全息图进行分类,而无需重建。使用原始全息图作为输入,经过训练的网络能够根据细胞结合的微珠数量对单个细胞进行分类。基于 DTL 的方法包括 VGG19 预训练网络,在实验数据中显示出稳健的性能。结合开发的 DTL 方法,LDIH 可以实现为一种低成本、便携式的即时诊断工具。
更新日期:2018-11-21
down
wechat
bug