当前位置:
X-MOL 学术
›
Cryst. Growth Des.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Dynamic Mechanical and Electric Behaviors of La-Doped BiVO4
Crystal Growth & Design ( IF 3.2 ) Pub Date : 2018-11-19 00:00:00 , DOI: 10.1021/acs.cgd.8b01356 He Lin 1 , Haitao Zhang 2 , Xiang He 1, 3 , Wentao Xu 1 , Youfu Zhou 1 , Zhiguo Yi 1, 3, 4
Crystal Growth & Design ( IF 3.2 ) Pub Date : 2018-11-19 00:00:00 , DOI: 10.1021/acs.cgd.8b01356 He Lin 1 , Haitao Zhang 2 , Xiang He 1, 3 , Wentao Xu 1 , Youfu Zhou 1 , Zhiguo Yi 1, 3, 4
Affiliation
Bismuth vanadate (BiVO4) is an important semiconductor with wide applications, but in-depth understanding of its fundamental dynamic behaviors is still lacking. To address this issue, the comprehensive analysis of structure, internal friction (IF), modulus, dielectric, and impedance spectra was employed to unambiguously disclose the dynamic mechanical and electric behaviors for a series of Bi1–xLaxVO4 ceramics (0 ≤ x ≤ 0.15). In sensitive mechanical measurement, five IF peaks, corresponding modulus anomalies and high-temperature creep behavior, have been observed in our Bi1–xLaxVO4 ceramics. Through analyzing their related kinetic parameters, defect formations and evolution processes, the complex evolution model of ferroelastic domains including four different stages, and the origin of grain boundary relaxation are well established. As for the electric experiment, there are two apparently different activation processes in low and high temperature regions, respectively. In conjunction with structural and mechanical characterizations, we confirm that the mixed electric/oxide ionic conduction dominates from 433 to 633 K, undergoing a structural change (633–673 K) to the complicated defect conduction at higher temperatures (673–833 K). Our findings smooth the path for better realization of the fundamental dynamic behaviors as well as extending practical applications of BiVO4-based materials.
中文翻译:
La掺杂BiVO 4的动态力学和电学行为
钒酸铋(BiVO 4)是一种具有广泛应用的重要半导体,但仍缺乏对其基本动态行为的深入了解。为了解决这个问题,我们对结构,内摩擦(IF),模量,介电常数和阻抗谱进行了综合分析,明确揭示了一系列Bi 1– x La x VO 4陶瓷的动态力学和电学行为(0 ≤ X ≤0.15)。在灵敏的机械测量中,在我们的Bi 1– x La x VO 4中观察到五个IF峰,相应的模量异常和高温蠕变行为。陶瓷。通过分析它们的相关动力学参数,缺陷形成和演化过程,建立了包括四个不同阶段的铁弹性域的复杂演化模型,以及晶界弛豫的起源。至于电实验,在低温和高温区域分别有两个明显不同的激活过程。结合结构和机械特性,我们确认混合的电/氧化物离子传导在433至633 K中占主导地位,经历了结构变化(633–673 K),并在较高的温度(673–833 K)下发生了复杂的缺陷传导。我们的发现为更好地实现基本动态行为以及扩展BiVO 4的实际应用铺平了道路基材料。
更新日期:2018-11-19
中文翻译:
La掺杂BiVO 4的动态力学和电学行为
钒酸铋(BiVO 4)是一种具有广泛应用的重要半导体,但仍缺乏对其基本动态行为的深入了解。为了解决这个问题,我们对结构,内摩擦(IF),模量,介电常数和阻抗谱进行了综合分析,明确揭示了一系列Bi 1– x La x VO 4陶瓷的动态力学和电学行为(0 ≤ X ≤0.15)。在灵敏的机械测量中,在我们的Bi 1– x La x VO 4中观察到五个IF峰,相应的模量异常和高温蠕变行为。陶瓷。通过分析它们的相关动力学参数,缺陷形成和演化过程,建立了包括四个不同阶段的铁弹性域的复杂演化模型,以及晶界弛豫的起源。至于电实验,在低温和高温区域分别有两个明显不同的激活过程。结合结构和机械特性,我们确认混合的电/氧化物离子传导在433至633 K中占主导地位,经历了结构变化(633–673 K),并在较高的温度(673–833 K)下发生了复杂的缺陷传导。我们的发现为更好地实现基本动态行为以及扩展BiVO 4的实际应用铺平了道路基材料。