当前位置:
X-MOL 学术
›
Inorg. Chem.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Exploration of CeO2–CuO Quantum Dots in Situ Grown on Graphene under Hypha Assistance for Highly Efficient Solar-Driven Hydrogen Production
Inorganic Chemistry ( IF 4.3 ) Pub Date : 2018-11-19 00:00:00 , DOI: 10.1021/acs.inorgchem.8b01936 Junchao Qian 1 , Zhigang Chen 1 , Feng Chen 1, 2 , Yaping Wang 3 , Zhengying Wu 1 , Wenya Zhang 1 , Zhiyi Wu 4 , Ping Li 5
Inorganic Chemistry ( IF 4.3 ) Pub Date : 2018-11-19 00:00:00 , DOI: 10.1021/acs.inorgchem.8b01936 Junchao Qian 1 , Zhigang Chen 1 , Feng Chen 1, 2 , Yaping Wang 3 , Zhengying Wu 1 , Wenya Zhang 1 , Zhiyi Wu 4 , Ping Li 5
Affiliation
The development of an artificial model of photoinduced hydrogen production system requires efficient, long-term stability and cost-competitive photocatalysts to store solar energy in chemical bonds. However, the existing photocatalysts still suffer from the high cost, high recombination rate of photoexcited electron–hole pairs, and poor photostability. Herein, we demonstrate the synthesis of a p-type CuO/n-type CeO2 heterojunction in situ grown on graphene via a hypha assistance process. Amazingly, optical and photoelectrochemical measurements show the superiority of this hierarchically biomorphic structure. The observed H2 evolution rate of the CeO2–CuO quantum dots/graphene has reached 2481 μmol·h–1·g–1 and remains unchanged in four hydrogen production cycles. Considering the convenience of microbial culture, this heterostructure system has great potential as a photocatalyst for solar-fuel conversion.
中文翻译:
菌丝辅助下石墨烯上原位生长的CeO 2 -CuO量子点的研究
光诱导制氢系统的人工模型的开发需要有效,长期的稳定性和具有成本竞争力的光催化剂,以化学键的形式存储太阳能。然而,现有的光催化剂仍然遭受高成本,光激发电子-空穴对的高复合率以及差的光稳定性的困扰。在这里,我们证明了通过菌丝辅助过程在石墨烯上原位生长的p型CuO / n型CeO 2异质结的合成。令人惊讶的是,光学和光电化学测量显示了这种分级生物形态结构的优越性。CeO 2 –CuO量子点/石墨烯的H 2演化速率已达到2481μmol·h –1 ·g –1并且在四个制氢周期中保持不变。考虑到微生物培养的便利性,该异质结构系统作为光催化剂用于太阳能转换具有很大的潜力。
更新日期:2018-11-19
中文翻译:
菌丝辅助下石墨烯上原位生长的CeO 2 -CuO量子点的研究
光诱导制氢系统的人工模型的开发需要有效,长期的稳定性和具有成本竞争力的光催化剂,以化学键的形式存储太阳能。然而,现有的光催化剂仍然遭受高成本,光激发电子-空穴对的高复合率以及差的光稳定性的困扰。在这里,我们证明了通过菌丝辅助过程在石墨烯上原位生长的p型CuO / n型CeO 2异质结的合成。令人惊讶的是,光学和光电化学测量显示了这种分级生物形态结构的优越性。CeO 2 –CuO量子点/石墨烯的H 2演化速率已达到2481μmol·h –1 ·g –1并且在四个制氢周期中保持不变。考虑到微生物培养的便利性,该异质结构系统作为光催化剂用于太阳能转换具有很大的潜力。