当前位置: X-MOL 学术ACS Appl. Mater. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Ultrahigh Conductivity and Superior Interfacial Adhesion of a Nanostructured, Photonic-Sintered Copper Membrane for Printed Flexible Hybrid Electronics
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2018-11-19 00:00:00 , DOI: 10.1021/acsami.8b17164
Young-Tae Kwon 1, 2 , Yun-Soung Kim 1 , Yongkuk Lee 3 , Shinjae Kwon 1 , Minseob Lim 2 , Yoseb Song 2 , Yong-Ho Choa 2 , Woon-Hong Yeo 1, 4
Affiliation  

Inkjet-printed electronics using metal particles typically lack electrical conductivity and interfacial adhesion with an underlying substrate. To address the inherent issues of printed materials, this Research Article introduces advanced materials and processing methodologies. Enhanced adhesion of the inkjet-printed copper (Cu) on a flexible polyimide film is achieved by using a new surface modification technique, a nanostructured self-assembled monolayer (SAM) of (3-mercaptopropyl)trimethoxysilane. A standardized adhesion test reveals the superior adhesion strength (1192.27 N/m) of printed Cu on the polymer film, while maintaining extreme mechanical flexibility proven by 100 000 bending cycles. In addition to the increased adhesion, the nanostructured SAM treatment on printed Cu prevents formation of native oxide layers. The combination of the newly synthesized Cu ink and associated sintering technique with an intense pulsed ultraviolet and visible light absorption enables ultrahigh conductivity of printed Cu (2.3 × 10–6 Ω·cm), which is the highest electrical conductivity reported to date. The comprehensive materials engineering technologies offer highly reliable printing of Cu patterns for immediate use in wearable flexible hybrid electronics. In vivo demonstration of printed, skin-conformal Cu electrodes indicates a very low skin-electrode impedance (<50 kΩ) without a conductive gel and successfully measures three types of biopotentials, including electrocardiograms, electromyograms, and electrooculograms.

中文翻译:

印刷柔性混合电子器件的纳米结构,光子烧结铜膜的超高电导率和优异的界面粘合性

使用金属颗粒的喷墨印刷电子设备通常缺乏导电性以及与下面的基材的界面粘附性。为了解决印刷材料的内在问题,本研究文章介绍了先进的材料和加工方法。通过使用一种新的表面改性技术,即(3-巯基丙基)三甲氧基硅烷的纳米结构自组装单层(SAM),可以在柔性聚酰亚胺薄膜上增强喷墨印刷铜(Cu)的附着力。标准化的附着力测试表明印刷的铜在聚合物薄膜上具有出色的附着力(1192.27 N / m),同时保持了100000次弯曲循环证明的极高的机械柔韧性。除了增加附着力外,在印刷铜上进行纳米结构SAM处理还可以防止形成天然氧化物层。–6Ω ·cm),这是迄今为止报告的最高电导率。全面的材料工程技术可提供高度可靠的Cu图案印刷,可立即用于可穿戴柔性混合电子产品中。体内印刷的,皮肤保形的铜电极的演示表明,如果没有导电凝胶,皮肤电极的阻抗非常低(<50kΩ),并且可以成功地测量三种类型的生物电势,包括心电图,肌电图和眼电图。
更新日期:2018-11-19
down
wechat
bug