当前位置:
X-MOL 学术
›
J. Phys. Chem. C
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Interplay Between Morphology, Optical Properties, and Electronic Structure of Solution-Processed Bi2S3 Colloidal Nanocrystals
The Journal of Physical Chemistry C ( IF 3.3 ) Pub Date : 2015-05-01 00:00:00 , DOI: 10.1021/acs.jpcc.5b01305 Peilin Han 1 , Agustín Mihi 1 , Josep Ferre-borrull 1 , Josep Pallarés 1 , Lluis F. Marsal 1
The Journal of Physical Chemistry C ( IF 3.3 ) Pub Date : 2015-05-01 00:00:00 , DOI: 10.1021/acs.jpcc.5b01305 Peilin Han 1 , Agustín Mihi 1 , Josep Ferre-borrull 1 , Josep Pallarés 1 , Lluis F. Marsal 1
Affiliation
Bi2S3 nanocrystals with different shapes and sizes are obtained by a hot injection approach using bismuth neodecanoate and thiolamine as bismuth and sulfur precursors. The colloid morphology, from nanodots to nanorods, with sizes ranging from 3–4 nm to 40–50 nm strongly depends on the preparation conditions such as injection temperature and ratio of Bi/S precursors and ultimately impacts the optical and electrical properties of the final nanocrystals. The resulting products are analyzed using X-ray powder diffraction (XRD), transmission electron microscope (TEM), UV–vis absorption spectroscopy, and photoluminescence spectroscopy (PL). A blue shift in the band gap is observed at 1.87, 1.89, and 2.04 eV as we go from nanodots to nanorods with aspect ratios of 3, 5, and 1, respectively. These observations indicate quantum confinement effects due to the different diameters of nanocrystals. The crystallinity and morphology of nanocrystals influence significantly the PL emission, decreasing for nanodots and increasing for nanorods with the high aspect ratio. It also results in the variation in electronic structure from X-ray photoelectron spectroscopy (XPS) and ultraviolet photoemission (UPS) characterization that the valence band maximum shifts to low-energy level corresponding to the samples with aspect ratios of 3, 5, and 1, respectively.
中文翻译:
溶液处理的Bi 2 S 3胶态纳米晶体的形态,光学性质和电子结构之间的相互作用
Bi 2 S 3通过使用新癸酸铋和硫醇胺作为铋和硫的前体的热注射方法获得具有不同形状和尺寸的纳米晶体。胶体形态,从纳米点到纳米棒,尺寸范围从3-4 nm到40-50 nm,在很大程度上取决于制备条件,例如注入温度和Bi / S前体的比例,最终影响最终化合物的光学和电学性质。纳米晶体。使用X射线粉末衍射(XRD),透射电子显微镜(TEM),紫外可见吸收光谱和光致发光光谱(PL)对所得产物进行分析。当我们从长宽比分别为3、5和1的纳米点到纳米棒时,在1.87、1.89和2.04 eV处观察到了带隙的蓝移。这些观察结果表明由于纳米晶体的直径不同而产生的量子限制效应。纳米晶体的结晶度和形态会显着影响PL发射,高纵横比的纳米点的PL发射减少,纳米棒的PL发射增加。它还会导致X射线光电子能谱(XPS)和紫外光发射(UPS)表征的电子结构发生变化,即价带最大移至与高宽比为3、5和1的样品相对应的低能级。 , 分别。
更新日期:2015-05-01
中文翻译:
溶液处理的Bi 2 S 3胶态纳米晶体的形态,光学性质和电子结构之间的相互作用
Bi 2 S 3通过使用新癸酸铋和硫醇胺作为铋和硫的前体的热注射方法获得具有不同形状和尺寸的纳米晶体。胶体形态,从纳米点到纳米棒,尺寸范围从3-4 nm到40-50 nm,在很大程度上取决于制备条件,例如注入温度和Bi / S前体的比例,最终影响最终化合物的光学和电学性质。纳米晶体。使用X射线粉末衍射(XRD),透射电子显微镜(TEM),紫外可见吸收光谱和光致发光光谱(PL)对所得产物进行分析。当我们从长宽比分别为3、5和1的纳米点到纳米棒时,在1.87、1.89和2.04 eV处观察到了带隙的蓝移。这些观察结果表明由于纳米晶体的直径不同而产生的量子限制效应。纳米晶体的结晶度和形态会显着影响PL发射,高纵横比的纳米点的PL发射减少,纳米棒的PL发射增加。它还会导致X射线光电子能谱(XPS)和紫外光发射(UPS)表征的电子结构发生变化,即价带最大移至与高宽比为3、5和1的样品相对应的低能级。 , 分别。