当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Perovskite-Polymer Blends Influencing Microstructures, Nonradiative Recombination Pathways, and Photovoltaic Performance of Perovskite Solar Cells
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2018-11-15 00:00:00 , DOI: 10.1021/acsami.8b18200 Azhar Fakharuddin 1, 2 , Michael Seybold 1 , Antonio Agresti 3 , Sara Pescetelli 3 , Fabio Matteocci 3 , Muhammad Irfan Haider 1, 4 , Susanne T. Birkhold 1 , Hao Hu 1 , Rajiv Giridharagopal 5 , Muhammad Sultan 1, 6 , Iván Mora-Seró 7 , Aldo Di Carlo 3 , Lukas Schmidt-Mende 1
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2018-11-15 00:00:00 , DOI: 10.1021/acsami.8b18200 Azhar Fakharuddin 1, 2 , Michael Seybold 1 , Antonio Agresti 3 , Sara Pescetelli 3 , Fabio Matteocci 3 , Muhammad Irfan Haider 1, 4 , Susanne T. Birkhold 1 , Hao Hu 1 , Rajiv Giridharagopal 5 , Muhammad Sultan 1, 6 , Iván Mora-Seró 7 , Aldo Di Carlo 3 , Lukas Schmidt-Mende 1
Affiliation
Solar cells based on organic–inorganic halide perovskites are now leading the photovoltaic technologies because of their high power conversion efficiency. Recently, there have been debates on the microstructure-related defects in metal halide perovskites (grain size, grain boundaries, etc.) and a widespread view is that large grains are a prerequisite to suppress nonradiative recombination and improve photovoltaic performance, although opinions against it also exist. Herein, we employ blends of methylammonium lead iodide perovskites with an insulating polymer (polyvinylpyrrolidone) that offer the possibility to tune the grain size in order to obtain a fundamental understanding of the photoresponse at the microscopic level. We provide, for the first time, spatially resolved details of the microstructures in such blend systems via Raman mapping, light beam-induced current imaging, and conductive atomic force microscopy. Although the polymer blend systems systematically alter the morphology by creating small grains (more grain boundaries), they reduce nonradiative recombination within the film and enhance its spatial homogeneity of radiative recombination. We attribute this to a reduction in the density of bulk trap states, as evidenced by an order of magnitude higher photoluminescence intensity and a significantly higher open-circuit voltage when the polymer is incorporated into the perovskite films. The solar cells employing blend systems also show nearly hysteresis-free power conversion efficiency ∼17.5%, as well as a remarkable shelf-life stability over 100 days.
中文翻译:
钙钛矿-聚合物共混物影响钙钛矿太阳能电池的微观结构,非辐射复合途径和光伏性能
基于有机-无机卤化物钙钛矿的太阳能电池由于其高功率转换效率,目前正引领光伏技术。近来,关于金属卤化物钙钛矿中与微观结构有关的缺陷(晶粒尺寸,晶界等)的争论不断,并且普遍的观点是,大晶粒是抑制非辐射复合并改善光伏性能的先决条件,尽管对此有反对意见。也存在。在本文中,我们采用了甲基铵碘化铅钙钛矿与绝缘聚合物(聚乙烯吡咯烷酮)的混合物,该混合物提供了调节晶粒尺寸的可能性,以便在微观水平上获得对光响应的基本了解。我们首次通过拉曼映射提供了这种共混系统中微观结构的空间分辨细节,光束感应电流成像和导电原子力显微镜。尽管聚合物共混体系通过产生小的晶粒(更多的晶界)来系统地改变形态,但它们减少了膜内的非辐射复合并增强了其在辐射复合中的空间均匀性。我们将其归因于整体陷阱态密度的降低,这可通过将聚合物掺入钙钛矿薄膜中时获得更高的光致发光强度和明显更高的开路电压来证明。采用混合系统的太阳能电池还显示出几乎无磁滞的功率转换效率,约为17.5%,并且在100天之内具有显着的保质期稳定性。尽管聚合物共混体系通过产生小的晶粒(更多的晶界)来系统地改变形态,但它们减少了膜内的非辐射复合并增强了其在辐射复合中的空间均匀性。我们将其归因于整体陷阱态密度的降低,这可通过将聚合物掺入钙钛矿薄膜中时获得更高的光致发光强度和明显更高的开路电压来证明。采用混合系统的太阳能电池还显示出几乎无磁滞的功率转换效率,约为17.5%,并且在100天之内具有显着的保质期稳定性。尽管聚合物共混体系通过产生小的晶粒(更多的晶界)来系统地改变形态,但它们减少了膜内的非辐射复合并增强了其在辐射复合中的空间均匀性。我们将其归因于整体陷阱态密度的降低,这可通过将聚合物掺入钙钛矿薄膜中时获得更高的光致发光强度和明显更高的开路电压来证明。采用混合系统的太阳能电池还显示出几乎无磁滞的功率转换效率,约为17.5%,并且在100天之内具有显着的保质期稳定性。我们将其归因于整体陷阱态密度的降低,这可通过将聚合物掺入钙钛矿薄膜中时获得更高的光致发光强度和明显更高的开路电压来证明。采用混合系统的太阳能电池还显示出几乎无磁滞的功率转换效率,约为17.5%,并且在100天之内具有显着的保质期稳定性。我们将其归因于整体陷阱态密度的降低,这可通过将聚合物掺入钙钛矿薄膜中时获得更高的光致发光强度和明显更高的开路电压来证明。采用混合系统的太阳能电池还显示出几乎无磁滞的功率转换效率,约为17.5%,并且在100天之内具有显着的保质期稳定性。
更新日期:2018-11-15
中文翻译:
钙钛矿-聚合物共混物影响钙钛矿太阳能电池的微观结构,非辐射复合途径和光伏性能
基于有机-无机卤化物钙钛矿的太阳能电池由于其高功率转换效率,目前正引领光伏技术。近来,关于金属卤化物钙钛矿中与微观结构有关的缺陷(晶粒尺寸,晶界等)的争论不断,并且普遍的观点是,大晶粒是抑制非辐射复合并改善光伏性能的先决条件,尽管对此有反对意见。也存在。在本文中,我们采用了甲基铵碘化铅钙钛矿与绝缘聚合物(聚乙烯吡咯烷酮)的混合物,该混合物提供了调节晶粒尺寸的可能性,以便在微观水平上获得对光响应的基本了解。我们首次通过拉曼映射提供了这种共混系统中微观结构的空间分辨细节,光束感应电流成像和导电原子力显微镜。尽管聚合物共混体系通过产生小的晶粒(更多的晶界)来系统地改变形态,但它们减少了膜内的非辐射复合并增强了其在辐射复合中的空间均匀性。我们将其归因于整体陷阱态密度的降低,这可通过将聚合物掺入钙钛矿薄膜中时获得更高的光致发光强度和明显更高的开路电压来证明。采用混合系统的太阳能电池还显示出几乎无磁滞的功率转换效率,约为17.5%,并且在100天之内具有显着的保质期稳定性。尽管聚合物共混体系通过产生小的晶粒(更多的晶界)来系统地改变形态,但它们减少了膜内的非辐射复合并增强了其在辐射复合中的空间均匀性。我们将其归因于整体陷阱态密度的降低,这可通过将聚合物掺入钙钛矿薄膜中时获得更高的光致发光强度和明显更高的开路电压来证明。采用混合系统的太阳能电池还显示出几乎无磁滞的功率转换效率,约为17.5%,并且在100天之内具有显着的保质期稳定性。尽管聚合物共混体系通过产生小的晶粒(更多的晶界)来系统地改变形态,但它们减少了膜内的非辐射复合并增强了其在辐射复合中的空间均匀性。我们将其归因于整体陷阱态密度的降低,这可通过将聚合物掺入钙钛矿薄膜中时获得更高的光致发光强度和明显更高的开路电压来证明。采用混合系统的太阳能电池还显示出几乎无磁滞的功率转换效率,约为17.5%,并且在100天之内具有显着的保质期稳定性。我们将其归因于整体陷阱态密度的降低,这可通过将聚合物掺入钙钛矿薄膜中时获得更高的光致发光强度和明显更高的开路电压来证明。采用混合系统的太阳能电池还显示出几乎无磁滞的功率转换效率,约为17.5%,并且在100天之内具有显着的保质期稳定性。我们将其归因于整体陷阱态密度的降低,这可通过将聚合物掺入钙钛矿薄膜中时获得更高的光致发光强度和明显更高的开路电压来证明。采用混合系统的太阳能电池还显示出几乎无磁滞的功率转换效率,约为17.5%,并且在100天之内具有显着的保质期稳定性。