Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Tailoring the Core–Satellite Nanoassembly Architectures by Tuning Internanoparticle Electrostatic Interactions
Langmuir ( IF 3.7 ) Pub Date : 2018-11-08 00:00:00 , DOI: 10.1021/acs.langmuir.8b02792
Agampodi S. De Silva Indrasekara , Stephen J. Norton , Nicholas K. Geitner , Bridget M. Crawford , Mark R. Wiesner , Tuan Vo-Dinh
Langmuir ( IF 3.7 ) Pub Date : 2018-11-08 00:00:00 , DOI: 10.1021/acs.langmuir.8b02792
Agampodi S. De Silva Indrasekara , Stephen J. Norton , Nicholas K. Geitner , Bridget M. Crawford , Mark R. Wiesner , Tuan Vo-Dinh
![]() |
The use of plasmonic nanoplatforms has received increasing interest in a wide variety of fields ranging from theranostics to environmental sensing to plant biology. In particular, the development of plasmonic nanoparticles into ordered nanoclusters has been of special interest due to the new chemical functionalities and optical responses that they can introduce. However, achieving predetermined nanocluster architectures from bottom-up approaches in the colloidal solution state still remains a great challenge. Herein, we report a one-pot assembly approach that provides flexibility in precise control of core–satellite nanocluster architectures in the colloidal solution state. We found that the pH of the assembly medium plays a vital role in the hierarchy of the nanoclusters. The architecture along with the size of the satellite gold nanoparticles determines the optical responses of nanoclusters. Using electron microscopy and optical spectroscopy, we introduce a set of design rules for the synthesis of distinct architectures of silica-core gold satellites nanoclusters in the colloidal solution state. Our findings provide insight into advancing the colloidal solution state nanoclusters formation with predictable architectures and optical properties.
中文翻译:
通过调整纳米粒子间的静电相互作用来定制核心-卫星纳米组装结构。
等离子体纳米平台的使用在从诊断论到环境传感再到植物生物学的广泛领域中受到越来越多的关注。特别地,由于等离子体能引入的新化学功能和光学响应,将等离子体纳米颗粒发展成为有序的纳米簇已经引起了人们的特别关注。然而,从胶体溶液状态的自下而上的方法实现预定的纳米簇体系结构仍然是巨大的挑战。本文中,我们报告了一种一锅法组装方法,该方法可在胶体溶液状态下精确控制核心-卫星纳米簇体系结构时提供灵活性。我们发现组装介质的pH在纳米簇的层次结构中起着至关重要的作用。卫星金纳米颗粒的大小及其结构决定了纳米团簇的光学响应。使用电子显微镜和光谱学,我们介绍了一套设计规则,用于合成胶体溶液状态的硅核金卫星纳米簇的不同结构。我们的发现为以可预测的结构和光学性质推进胶体溶液状态纳米簇的形成提供了见识。
更新日期:2018-11-08
中文翻译:

通过调整纳米粒子间的静电相互作用来定制核心-卫星纳米组装结构。
等离子体纳米平台的使用在从诊断论到环境传感再到植物生物学的广泛领域中受到越来越多的关注。特别地,由于等离子体能引入的新化学功能和光学响应,将等离子体纳米颗粒发展成为有序的纳米簇已经引起了人们的特别关注。然而,从胶体溶液状态的自下而上的方法实现预定的纳米簇体系结构仍然是巨大的挑战。本文中,我们报告了一种一锅法组装方法,该方法可在胶体溶液状态下精确控制核心-卫星纳米簇体系结构时提供灵活性。我们发现组装介质的pH在纳米簇的层次结构中起着至关重要的作用。卫星金纳米颗粒的大小及其结构决定了纳米团簇的光学响应。使用电子显微镜和光谱学,我们介绍了一套设计规则,用于合成胶体溶液状态的硅核金卫星纳米簇的不同结构。我们的发现为以可预测的结构和光学性质推进胶体溶液状态纳米簇的形成提供了见识。