当前位置:
X-MOL 学术
›
Nano Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Bacterial Nanobionics via 3D Printing
Nano Letters ( IF 9.6 ) Pub Date : 2018-11-07 00:00:00 , DOI: 10.1021/acs.nanolett.8b02642
Sudeep Joshi 1 , Ellexis Cook 1 , Manu S. Mannoor 1
Nano Letters ( IF 9.6 ) Pub Date : 2018-11-07 00:00:00 , DOI: 10.1021/acs.nanolett.8b02642
Sudeep Joshi 1 , Ellexis Cook 1 , Manu S. Mannoor 1
Affiliation
![]() |
Investigating the multidimensional integration between different microbiological kingdoms possesses potential toward engineering next-generation bionic architectures. Bacterial and fungal kingdom exhibits mutual symbiosis that can offer advanced functionalities to these bionic architectures. Moreover, functional nanomaterials can serve as probing agents for accessing newer information from microbial organisms due to their dimensional similarities. In this article, a bionic mushroom was created by intertwining cyanobacterial cells with graphene nanoribbons (GNRs) onto the umbrella-shaped pileus of mushroom for photosynthetic bioelectricity generation. These seamlessly merged GNRs function as agents for mediating extracellular electron transport from cyanobacteria resulting in photocurrent generation. Additionally, three-dimensional (3D) printing technique was used to assemble cyanobacterial cells in anisotropic, densely packed geometry resulting in adequate cell-population density for efficient collective behavior. These 3D printed cyanobacterial colonies resulted in comparatively higher photocurrent (almost 8-fold increase) than isotropically casted cyanobacteria of similar seeding density. An insight of the proposed integration between cyanobacteria and mushroom derives remarkable advantage that arises from symbiotic relationship, termed here as engineered bionic symbiosis. Existence of this engineered bionic symbiosis was confirmed by UV–visible spectroscopy and standard plate counting method. Taken together, the present study augments scientific understanding of multidimensional integration between the living biological microworld and functional abiotic nanomaterials to establish newer dimensionalities toward advancement of bacterial nanobionics.
中文翻译:
通过3D打印的细菌纳米仿生学
研究不同微生物界之间的多维整合对于工程化下一代仿生体系结构具有潜力。细菌和真菌王国表现出相互共生的特性,可以为这些仿生建筑提供先进的功能。此外,由于功能纳米材料的尺寸相似性,它们可以用作从微生物获取新信息的探测剂。在本文中,仿生蘑菇是通过将蓝细菌细胞与石墨烯纳米带(GNR)缠绕到伞形蘑菇上形成光合作用而产生的。这些无缝合并的GNRs充当介导蓝细菌产生胞外电子转运的试剂,从而产生光电流。此外,三维(3D)打印技术用于以各向异性,密集堆积的几何形状组装蓝细菌细胞,从而产生足够的细胞密度以实现有效的集体行为。这些3D打印的蓝细菌菌落比具有相似播种密度的各向同性铸造蓝细菌产生了更高的光电流(几乎增加了8倍)。对蓝藻和蘑菇之间拟议的整合的见解从共生关系中获得了显着的优势,共生关系在这里被称为工程仿生共生。该工程仿生共生体的存在通过紫外可见光谱法和标准板计数法得以证实。在一起
更新日期:2018-11-07
中文翻译:

通过3D打印的细菌纳米仿生学
研究不同微生物界之间的多维整合对于工程化下一代仿生体系结构具有潜力。细菌和真菌王国表现出相互共生的特性,可以为这些仿生建筑提供先进的功能。此外,由于功能纳米材料的尺寸相似性,它们可以用作从微生物获取新信息的探测剂。在本文中,仿生蘑菇是通过将蓝细菌细胞与石墨烯纳米带(GNR)缠绕到伞形蘑菇上形成光合作用而产生的。这些无缝合并的GNRs充当介导蓝细菌产生胞外电子转运的试剂,从而产生光电流。此外,三维(3D)打印技术用于以各向异性,密集堆积的几何形状组装蓝细菌细胞,从而产生足够的细胞密度以实现有效的集体行为。这些3D打印的蓝细菌菌落比具有相似播种密度的各向同性铸造蓝细菌产生了更高的光电流(几乎增加了8倍)。对蓝藻和蘑菇之间拟议的整合的见解从共生关系中获得了显着的优势,共生关系在这里被称为工程仿生共生。该工程仿生共生体的存在通过紫外可见光谱法和标准板计数法得以证实。在一起