当前位置: X-MOL 学术J. Am. Chem. Soc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Two-dimensional Hybrid Halide Perovskites: Principles and Prom-ises
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2018-11-06 , DOI: 10.1021/jacs.8b10851
Lingling Mao 1 , Constantinos C. Stoumpos 1 , Mercouri G. Kanatzidis 1
Affiliation  

Hybrid halide perovskites have become the "next big thing" in emerging semiconductor materials, as the past decade witnessed their successful application in high-performance photovoltaics. This resurgence has encompassed enormous and widespread development of the three-dimensional (3D) perovskites, spearheaded by CH3NH3PbI3. The next generation of halide perovskites, however, is characterized by reduced dimensionality perovskites, emphasizing the two-dimensional (2D) perovskite derivatives which expand the field into a more diverse subgroup of semiconducting hybrids that possesses even higher tunability and excellent photophysical properties. In this Perspective, we begin with a historical flashback to early reports before the "perovskite fever", and we follow this original work to its fruition in the present day, where 2D halide perovskites are in the spotlight of current research, offering characteristics desirable in high-performance optoelectronics. We approach the evolution of 2D halide perovskites from a structural perspective, providing a way to classify the diverse structure types of the materials, which largely dictate the unusual physical properties observed. We sort the 2D hybrid halide perovskites on the basis of two key components: the inorganic layers and their modification, and the organic cation diversity. As these two heterogeneous components blend, either by synthetic manipulation (shuffling the organic cations or inorganic elements) or by application of external stimuli (temperature and pressure), the modular perovskite structure evolves to construct crystallographically defined quantum wells (QWs). The complex electronic structure that arises is sensitive to the structural features that could be in turn used as a knob to control the dielectric and optical properties the QWs. We conclude this Perspective with the most notable achievements in optoelectronic devices that have been demonstrated to date, with an eye toward future material discovery and potential technological developments.

中文翻译:

二维混合卤化物钙钛矿:原理和前景

混合卤化物钙钛矿已成为新兴半导体材料的“下一件大事”,因为过去十年见证了它们在高性能光伏领域的成功应用。这种复苏包括以 CH3NH3PbI3 为先锋的三维 (3D) 钙钛矿的巨大而广泛的发展。然而,下一代卤化物钙钛矿的特点是降维钙钛矿,强调二维 (2D) 钙钛矿衍生物,将领域扩展到更多样化的半导体杂化亚组,具有更高的可调性和优异的光物理特性。在这个视角中,我们从对“钙钛矿热”之前早期报告的历史倒叙开始,然后我们将这项原始工作延续到今天,其中二维卤化物钙钛矿是当前研究的焦点,提供高性能光电子学所需的特性。我们从结构的角度研究二维卤化物钙钛矿的演变,提供了一种对材料的不同结构类型进行分类的方法,这在很大程度上决定了所观察到的不寻常的物理特性。我们根据两个关键成分对二维杂化卤化物钙钛矿进行分类:无机层及其改性,以及有机阳离子多样性。当这两种异质成分通过合成操作(改变有机阳离子或无机元素)或通过施加外部刺激(温度和压力)混合时,模块化钙钛矿结构演变为构建晶体学定义的量子阱(QW)。出现的复杂电子结构对结构特征敏感,这些结构特征又可以用作控制 QW 的介电和光学特性的旋钮。我们以迄今为止已证明的光电设备中最显着的成就来结束这个观点,并着眼于未来的材料发现和潜在的技术发展。
更新日期:2018-11-06
down
wechat
bug