当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Boundary Lubrication Mechanisms for High-Performance Friction Modifiers
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2018-11-05 00:00:00 , DOI: 10.1021/acsami.8b11075 Xingliang He , Jie Lu , Michael Desanker , Anna Magdalene Invergo , Tracy Lynn Lohr , Ning Ren 1 , Frances E. Lockwood 1 , Tobin J. Marks , Yip-Wah Chung , Q. Jane Wang
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2018-11-05 00:00:00 , DOI: 10.1021/acsami.8b11075 Xingliang He , Jie Lu , Michael Desanker , Anna Magdalene Invergo , Tracy Lynn Lohr , Ning Ren 1 , Frances E. Lockwood 1 , Tobin J. Marks , Yip-Wah Chung , Q. Jane Wang
Affiliation
We recently reported a new molecular heterocyclic friction modifier (FM) that exhibits excellent friction and wear reduction in the boundary lubrication regime. This paper explores the mechanisms by which friction reduction occurs with heterocyclic alkyl–cyclen FM molecules. We find that these chelating molecules adsorb onto (oxidized) steel surfaces far more tenaciously than conventional FMs such as simple alkylamines. Molecular dynamics simulations argue that the surface coverage of our heterocyclic FM molecules remains close to 100% even at 200 °C. This thermal stability allows the FMs to firmly anchor to the surface, allowing the hydrocarbon chains of the molecules to interact and trap base oil lubricant molecules. This results in thicker boundary film thickness compared with conventional FMs, as shown by optical interferometry measurements.
中文翻译:
高性能摩擦改性剂的边界润滑机理
我们最近报道了一种新型分子杂环摩擦改进剂(FM),在边界润滑方案中具有出色的摩擦和降低磨损的性能。本文探讨了杂环烷基环FM分子减少摩擦的机理。我们发现,这些螯合分子比传统的FM(例如简单的烷基胺)更坚韧地吸附到(氧化的)钢表面上。分子动力学模拟表明,即使在200°C时,我们的杂环FM分子的表面覆盖率仍接近100%。这种热稳定性使FM牢固地锚定在表面上,从而使分子的烃链相互作用并捕获基础油润滑剂分子。如光学干涉测量法所示,与传统FM相比,这会导致边界膜的厚度更厚。
更新日期:2018-11-05
中文翻译:
高性能摩擦改性剂的边界润滑机理
我们最近报道了一种新型分子杂环摩擦改进剂(FM),在边界润滑方案中具有出色的摩擦和降低磨损的性能。本文探讨了杂环烷基环FM分子减少摩擦的机理。我们发现,这些螯合分子比传统的FM(例如简单的烷基胺)更坚韧地吸附到(氧化的)钢表面上。分子动力学模拟表明,即使在200°C时,我们的杂环FM分子的表面覆盖率仍接近100%。这种热稳定性使FM牢固地锚定在表面上,从而使分子的烃链相互作用并捕获基础油润滑剂分子。如光学干涉测量法所示,与传统FM相比,这会导致边界膜的厚度更厚。