当前位置:
X-MOL 学术
›
Adv. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
SnO2‐in‐Polymer Matrix for High‐Efficiency Perovskite Solar Cells with Improved Reproducibility and Stability
Advanced Materials ( IF 27.4 ) Pub Date : 2018-11-02 , DOI: 10.1002/adma.201805153 Jing Wei 1 , Fengwan Guo 2 , Xi Wang 1 , Kun Xu 1 , Ming Lei 1 , Yongqi Liang 2 , Yicheng Zhao 3 , Dongsheng Xu 2
Advanced Materials ( IF 27.4 ) Pub Date : 2018-11-02 , DOI: 10.1002/adma.201805153 Jing Wei 1 , Fengwan Guo 2 , Xi Wang 1 , Kun Xu 1 , Ming Lei 1 , Yongqi Liang 2 , Yicheng Zhao 3 , Dongsheng Xu 2
Affiliation
Understanding interfacial loss and the ways to improving interfacial property is critical to fabricate highly efficient and reproducible perovskite solar cells (PSCs). In SnO2‐based PSCs, nonradiative recombination sites at the SnO2–perovskite interface lead to a large potential loss and performance variation in the resulting photovoltaic devices. Here, a novel SnO2‐in‐polymer matrix (i.e., polyethylene glycol) is devised as the electron transporting layer to improve the film quality of the SnO2 electron transporting layer. The SnO2‐in‐polymer matrix is fabricated through spin‐coating a polymer‐incorporated SnO2 colloidal ink. The polymer is uniformly dispersed in SnO2 colloidal ink and promotes the nanoparticle disaggregation in the ink. Owing to polymer incorporation, the compactness and wetting property of SnO2 layer is significantly ameliorated. Finally, photovoltaic devices based on Cs0.05FA0.81MA0.14PbI2.55Br0.45 perovskite sandwiched between SnO2 and Spiro‐OMeTAD layer are fabricated. Compared with the averaging power conversion efficiency of 16.2% with 1.2% deviation for control devices, the optimized devices exhibit an improved averaging efficiency of 19.5% with 0.25% deviation. The conception of polymer incorporation in the electron transporting layer paves a way to further increase the performance of planar perovskite solar cells.
中文翻译:
用于高效钙钛矿太阳能电池的SnO2聚合物基体,具有更高的重现性和稳定性
了解界面损失以及改善界面性能的方法对于制造高效且可重现的钙钛矿太阳能电池(PSC)至关重要。在基于SnO 2的PSC中,SnO 2-钙钛矿界面处的非辐射复合位点会导致很大的电势损耗,并导致最终的光伏器件性能发生变化。在此,设计了一种新型的SnO 2聚合物基质(即聚乙二醇)作为电子传输层,以改善SnO 2电子传输层的膜质量。通过旋涂掺有聚合物的SnO 2胶体油墨可以制成SnO 2聚合物基体。聚合物均匀地分散在SnO 2中胶态油墨,并促进油墨中的纳米颗粒解聚。由于聚合物的引入,SnO 2层的致密性和润湿性得到明显改善。最后,夹在SnO 2之间的基于Cs 0.05 FA 0.81 MA 0.14 PbI 2.55 Br 0.45钙钛矿的光伏器件并制造Spiro-OMeTAD层。与控制设备的平均功率转换效率为16.2%(偏差为1.2%)相比,优化后的设备的平均功率转换效率为19.5%(偏差为0.25%)。在电子传输层中引入聚合物的概念为进一步提高平面钙钛矿太阳能电池的性能铺平了道路。
更新日期:2018-11-02
中文翻译:
用于高效钙钛矿太阳能电池的SnO2聚合物基体,具有更高的重现性和稳定性
了解界面损失以及改善界面性能的方法对于制造高效且可重现的钙钛矿太阳能电池(PSC)至关重要。在基于SnO 2的PSC中,SnO 2-钙钛矿界面处的非辐射复合位点会导致很大的电势损耗,并导致最终的光伏器件性能发生变化。在此,设计了一种新型的SnO 2聚合物基质(即聚乙二醇)作为电子传输层,以改善SnO 2电子传输层的膜质量。通过旋涂掺有聚合物的SnO 2胶体油墨可以制成SnO 2聚合物基体。聚合物均匀地分散在SnO 2中胶态油墨,并促进油墨中的纳米颗粒解聚。由于聚合物的引入,SnO 2层的致密性和润湿性得到明显改善。最后,夹在SnO 2之间的基于Cs 0.05 FA 0.81 MA 0.14 PbI 2.55 Br 0.45钙钛矿的光伏器件并制造Spiro-OMeTAD层。与控制设备的平均功率转换效率为16.2%(偏差为1.2%)相比,优化后的设备的平均功率转换效率为19.5%(偏差为0.25%)。在电子传输层中引入聚合物的概念为进一步提高平面钙钛矿太阳能电池的性能铺平了道路。