当前位置:
X-MOL 学术
›
Adv. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Phase Pure 2D Perovskite for High‐Performance 2D–3D Heterostructured Perovskite Solar Cells
Advanced Materials ( IF 27.4 ) Pub Date : 2018-11-02 , DOI: 10.1002/adma.201805323 Pengwei Li 1, 2 , Yiqiang Zhang 3 , Chao Liang 4 , Guichuan Xing 4 , Xiaolong Liu 2 , Fengyu Li 1 , Xiaotao Liu 3 , Xiaotian Hu 1, 2 , Guosheng Shao 3 , Yanlin Song 1
Advanced Materials ( IF 27.4 ) Pub Date : 2018-11-02 , DOI: 10.1002/adma.201805323 Pengwei Li 1, 2 , Yiqiang Zhang 3 , Chao Liang 4 , Guichuan Xing 4 , Xiaolong Liu 2 , Fengyu Li 1 , Xiaotao Liu 3 , Xiaotian Hu 1, 2 , Guosheng Shao 3 , Yanlin Song 1
Affiliation
Three‐dimensional (3D) metal‐halide perovskite solar cells (PSCs) have demonstrated exceptional high efficiency. However, instability of the 3D perovskite is the main challenge for industrialization. Incorporation of some long organic cations into perovskite crystal to terminate the lattice, and function as moisture and oxygen passivation layer and ion migration blocking layer, is proven to be an effective method to enhance the perovskite stability. Unfortunately, this method typically sacrifices charge‐carrier extraction efficiency of the perovskites. Even in 2D–3D vertically aligned heterostructures, a spread of bandgaps in the 2D due to varying degrees of quantum confinement also results in charge‐carrier localization and carrier mobility reduction. A trade‐off between the power conversion efficiency and stability is made. Here, by introducing 2D C6H18N2O2PbI4 (EDBEPbI4) microcrystals into the precursor solution, the grain boundaries of the deposited 3D perovskite film are vertically passivated with phase pure 2D perovskite. The phases pure (inorganic layer number n = 1) 2D perovskite can minimize photogenerated charge‐carrier localization in the low‐dimensional perovskite. The dominant vertical alignment does not affect charge‐carrier extraction. Therefore, high‐efficiency (21.06%) and ultrastable (retain 90% of the initial efficiency after 3000 h in air) planar PSCs are demonstrated with these 2D–3D mixtures.
中文翻译:
用于高性能2D–3D异质结构钙钛矿太阳能电池的相纯2D钙钛矿
三维(3D)金属卤化物钙钛矿太阳能电池(PSC)表现出卓越的高效率。但是,3D钙钛矿的不稳定性是工业化的主要挑战。已证明将一些长有机阳离子掺入钙钛矿晶体中以终止晶格,并起湿气和氧气钝化层和离子迁移阻挡层的作用,是增强钙钛矿稳定性的有效方法。不幸的是,这种方法通常会牺牲钙钛矿的载流子提取效率。即使在2D–3D垂直排列的异质结构中,由于量子限制程度的不同,2D中的带隙扩展也会导致电荷载流子局部化和载流子迁移率降低。在功率转换效率和稳定性之间进行权衡。这里,6 ħ 18 Ñ 2 ö 2碘化铅4(EDBEPbI 4)微晶到前体溶液中,所沉积的钙钛矿的3D膜的晶界垂直纯相的钙钛矿2D钝化。纯(无机层数n = 1)2D钙钛矿相可以使光生的电荷载流子在低维钙钛矿中的定位最小化。主要的垂直排列不影响电荷载流子的提取。因此,这些2D–3D混合物证明了高效的(21.06%)和超稳定的(在空气中放置3000 h后仍能保持初始效率的90%)平面PSC。
更新日期:2018-11-02
中文翻译:
用于高性能2D–3D异质结构钙钛矿太阳能电池的相纯2D钙钛矿
三维(3D)金属卤化物钙钛矿太阳能电池(PSC)表现出卓越的高效率。但是,3D钙钛矿的不稳定性是工业化的主要挑战。已证明将一些长有机阳离子掺入钙钛矿晶体中以终止晶格,并起湿气和氧气钝化层和离子迁移阻挡层的作用,是增强钙钛矿稳定性的有效方法。不幸的是,这种方法通常会牺牲钙钛矿的载流子提取效率。即使在2D–3D垂直排列的异质结构中,由于量子限制程度的不同,2D中的带隙扩展也会导致电荷载流子局部化和载流子迁移率降低。在功率转换效率和稳定性之间进行权衡。这里,6 ħ 18 Ñ 2 ö 2碘化铅4(EDBEPbI 4)微晶到前体溶液中,所沉积的钙钛矿的3D膜的晶界垂直纯相的钙钛矿2D钝化。纯(无机层数n = 1)2D钙钛矿相可以使光生的电荷载流子在低维钙钛矿中的定位最小化。主要的垂直排列不影响电荷载流子的提取。因此,这些2D–3D混合物证明了高效的(21.06%)和超稳定的(在空气中放置3000 h后仍能保持初始效率的90%)平面PSC。