当前位置:
X-MOL 学术
›
ACS Sustain. Chem. Eng.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Optimal Pre-hydration Age for CO2 Sequestration through Portland Cement Carbonation
ACS Sustainable Chemistry & Engineering ( IF 7.1 ) Pub Date : 2018-11-01 00:00:00 , DOI: 10.1021/acssuschemeng.8b03699 Duo Zhang 1 , Victor C. Li 1 , Brian R. Ellis 1
ACS Sustainable Chemistry & Engineering ( IF 7.1 ) Pub Date : 2018-11-01 00:00:00 , DOI: 10.1021/acssuschemeng.8b03699 Duo Zhang 1 , Victor C. Li 1 , Brian R. Ellis 1
Affiliation
An emerging technology of CO2 sequestration in Portland cement (PC) is through accelerated carbonation, where PC is intentionally carbonated at early hydration age and reinitiates long-term hydration upon completion of carbonation. However, the current literature has overlooked a fact that different PC hydration ages prior to carbonation (pre-hydration) could lead to distinct carbonation efficiencies and subsequent hydration behaviors (post-hydration). Here, we examine the effects of length of pre-hydration period on CO2 uptake and on the hydration extent and final strength at 28 days. The CO2 and H2O profiles in the carbonated PC were examined with thermogravimetric analysis/derivative thermogravimetric analysis. The pre-hydration path was traced with isothermal calorimetry. Experimental results suggested that extension of pre-hydration decreased CO2 uptake, but enhanced the extent of PC hydration at 28 days. It was found that a pre-hydration beyond the late deceleration period of PC hydration (where heat generation is slowing down) led to a higher hydrate content of cement paste, hence forming a higher compressive strength of mortar compared to the noncarbonated benchmarks at 28 days. The lesser carbonation-induced water loss and the nucleation seeding enabled by calcium carbonate are likely responsible for this effect. The finding reported here should be useful for fine-tuning PC carbonation process for CO2 sequestration in concrete.
中文翻译:
通过硅酸盐水泥碳化进行CO 2螯合的最佳预水合年龄
波特兰水泥(PC)中隔离CO 2的一项新兴技术是通过加速碳化来实现,其中PC在水合早期就被故意碳酸盐化,并在碳酸化完成后重新开始长期水合。然而,当前文献忽略了以下事实:碳酸化之前(预水合)的不同PC水合年龄可能导致明显的碳酸化效率和随后的水合行为(水合后)。在这里,我们研究了预水合时间的长短对CO 2吸收以及水合程度和28天最终强度的影响。CO 2和H 2用热重分析/导数热重分析检查了碳酸化PC中的O分布。用等温量热法追踪预水合路径。实验结果表明,延长预水合可降低CO 2摄取,但在28天时增加了PC的水合作用程度。研究发现,在PC水化的减速后期(发生热量降低的情况下)之前的预水化会导致水泥浆的水合物含量更高,因此与28天未碳化的基准水泥相比,砂浆的抗压强度更高。 。较小的碳酸化引起的水分流失和碳酸钙引起的成核晶种可能是造成这种效应的原因。此处报告的发现对于微调PC碳酸化过程以隔离混凝土中的CO 2很有用。
更新日期:2018-11-01
中文翻译:
通过硅酸盐水泥碳化进行CO 2螯合的最佳预水合年龄
波特兰水泥(PC)中隔离CO 2的一项新兴技术是通过加速碳化来实现,其中PC在水合早期就被故意碳酸盐化,并在碳酸化完成后重新开始长期水合。然而,当前文献忽略了以下事实:碳酸化之前(预水合)的不同PC水合年龄可能导致明显的碳酸化效率和随后的水合行为(水合后)。在这里,我们研究了预水合时间的长短对CO 2吸收以及水合程度和28天最终强度的影响。CO 2和H 2用热重分析/导数热重分析检查了碳酸化PC中的O分布。用等温量热法追踪预水合路径。实验结果表明,延长预水合可降低CO 2摄取,但在28天时增加了PC的水合作用程度。研究发现,在PC水化的减速后期(发生热量降低的情况下)之前的预水化会导致水泥浆的水合物含量更高,因此与28天未碳化的基准水泥相比,砂浆的抗压强度更高。 。较小的碳酸化引起的水分流失和碳酸钙引起的成核晶种可能是造成这种效应的原因。此处报告的发现对于微调PC碳酸化过程以隔离混凝土中的CO 2很有用。